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COMPENDIUM ON RISK ANALYSIS TECHNIQUES

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

In the past few years a great deal of attention has been
focused on the Department of Defense's problems of unanticipated cost
growth, system performance shortcomings and failure to deliver equipment
on schedule -- all of which adversely reflect on the management, planning
and systems analysis being done throughout the stages of materiel systems
development and procurement. It is recognized within WMC that the first
step in minimizing the occurrence of such problems is simply to acknowl-
edge thcir potential existence. To this end, ANC is making an effort
to consider program risks in decision making,

Formal recognitlon and emphasis on risk analysis in AMC
resulted from a July 31, 1969 memorandum from Deputy Secretary of Defense,
David Packard to the Secretaries of the Military Departments identifying
problem areas in the weapon system acquisition process. In this memo-
randum, Secretary Packard cited inadequate identification and considera-
tion of risks in major programs as a problem area requiring action. The
initial formal recognition within AMC was part of the "Program for the
Refinement of the Materiel Acquisition Process" (PROMAP-70) under the
direction of the DCGMA, AMC.

While PROMAP-70 was instrumental in emphasizing this problem
area to the AMC community, establishing a course of instructior in risk
analysis, and involving the AMC community in pilot risk analyses, there
stiil existed for some time a great deal of confusion concerning the role
of risk analysis, who was responsible for conducting risk analyses, and
what constituted an analysis of risk. Much of this confusion may have
resulted because risk analysis was often promoted and perceived as a new
concept instead of a forgotten or neglected part of systems analysis
and/or programi management. According to Quade and Boucher, risk analysis
is explicitly defined as part of systems ana.ysis. Their interpretation
of systems analysis is as follows: "The idea of an :inalysis to provide
advice is not new and, in concept, what needs to be done is simple and
rather obvious. One strives to look at the entire problem, as a whole,
in context, and to compare alternative choices in the light of their
possible outcomes. Three scrts of inquiry are required, any of which
can modify the others as work proceeds. There is a need, first of all,
for a systematic investigation Qf che decision maker's objectives and of
the relevant criteria for decidino among the alternatives that promise
to achieve these objectives. Neft, the alternatives need to be
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identified, exmnined foz feasibility, and then compared in terms of their
effectiveness and cost, taking time and risk into account. Finally, an
attempt must be made to design better alternatives and select other goals

-* if those previously examined are found wanting." (Reference 1)
Consideration of risk in systems analysis is thought to be one of the
major areas of application for risk analysis that Secretary Packard had
in mind in his memorandum.

In addition to tbi preceding application of risk analysis in
systems analysis, it is also thought that Secretary Packard was suggest-
ing that risk analysis be applied by program managers in their daily
activities. In this context, risk analysis need not have any broader
objective than the identification and evaluation of program risks. In
this case it is not necessary for it to be part of a systems analysis,
but rather, it should be part of the management information that is
routinely accumulated. This information should provide useful indicators
to project managers about potential problem areas, and may be
instrumental in program change decisions effected to reduce risk. It is
thought that it is virtually impossible to realistically plan, schedule
and control a development program without adequately identifying and
evaluating risks on a daily basis. The risks, thus identified constitute
the foundation of information required to make major decisions.

The analysis of risk in program management and systems analysis
at major decision points should be viewed as complementary activities in
tne successful development of a system. Neither activity by itself is
sufficient for a successful development program, nor does doing both
guarantee success. However, if risk analysis is conscientiously done in
both areas, more informed decisions will result and the specific pro-
grams will be under tighter control. Unfortunately, these roles of
risk analysis were not well defined at first, and instead of , renaissance
of risk analysis in systems analysis and program management there ensued
a concept definition period. During this period, a plethora of defini-
tions surfaced, concept papers were written ard there was a great deal
of discussion about the subject. However, all of these efforts tended to
cloud the concept more, and a general feeling of dissatisfaction resulted.
Finally, the Commanding General, AMC tasked the Directorate for Plans and
Analysis (AMCPA) to develop a set of guidelines for conducting risk
analysis in the decision-making context which would distinguish this from
risk analysis per se. The concept of decision risk analysis (DR%) has
arisen from this effort. In addition, the role of risk analysis and
decision risk analysis has been defined both in systems analysis and
program management. This guidance, hopefully, places risk analysis in
its proper context and should serve as the foundation for all future
activities in this area.

Quade, E.S., Boucher, W. I.; Systems Analysis and Policy Planning,
Applications in Defense, American Elsevier Publishing Company, New fork,
1968, p 11.
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Decision risk analysis is defined as "a discipline of systems
analysis, which in a structured manner, provides a meaningful measure of
the risks associated with various alternatives," whereas risk analysis
is defined as "an attempt to quantify uncertainty."

As the center for systems analysis activities within AMC, the
U.S. Army Materiel Systems Analysis Agency (AMSAA) has worked very closely
with AMCPA by participating in risk analyses, providing consultation to
the AMC community, developing iethods, and more recently preparing this
compendium on risk analysis techniques. It is not our intent to develop a
"cookbook" on risk analysis for we feel the diversity of problems makes
this virtually impossible. Rather the objective here is to develop a
definition of risk analysis in terms that allow one to relate to many
existing risk analysis techniques.

1.2 DEFINITION OF RISK ANALYSIS

As mentioned previously, risk analysis can be conducted in
either the day-to-day management of a program or as part of a systems
analysis at some major decision point. In the latter context, risk
analysis is one of many analyses -- such as resource and/or cost analysis
and effectiveness which are usually associated with a systems analysis.
These systems analysis -- in which the risks associated with various
alternatives have been evaluated, are labeled decision risk analyses
according to current ANC guidance.

On the other hand, risk analysis can be conducted to provide
management information to the project office. The information obtained
should be instrumental in planning, scheduling, and controlling the
development program.

At this point, decision analysis as defined by Raiffa
(Reference 2) will be differentiated from decision risk analysis in the
ANC context. As defined previously, decision risk analysis is part of
systems analysis. The term was originally coined by AMC to emphasize the
risk analysis aspect of systems analysis. While decision risk analysis
and systems analysis provide decision makers with a comprehensive and
orderly presentation of choices for complex and unique problems, high-
lighting the uncertainty in the choice, they leave the decision maker
the job of exercisiw. his preferences in choosing an alternative. In
complex problems, this is not an easy job. Decision analysis, on the
other hand, elicits the decision maker's preferences (using utility
theory) and incorporates these preferences in the selection of an
alternative.

2 Raiffa, Howard; Decision Analysis, Introductory Lectures on Choices
Under Uncertainty, Addison-Wesley Publishing Company, Massachusetts,
1968.
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While decision analysis is certainly a rational appro:ach to
decision making in private industry, thý unique features of the materiel
acquisition decision-making process make the concept difficult, if not
impossible to apply. Determining a utility function for military
decisions is thought to be more difficult because the most frequently
used comparative measures are not as easy to relate to as profit and loss
in the industrial context. In addition, it is also often very difficult
to determine the identity of the decision maker. In most instances,
there are actually a hierarchy of decision makers making choices at
the various points in the decision-making process. Even if one chooses
only to concentrate on the immediate decision maker he is generally
unavailable to the analyst until the decision briefing. Thus, the
decision analysis (utility theory) approach does not appear to be
applicable in this process.

It is the authors' contention that the best one can do ar this
time is structure the decision risk analysis so that the trade-offs
inherent in the alternatives are visible and meaningfully displayed.

Returning to the task at hand, recall that risk analysis was
defined as an atter't to quantify uncertainty. While this definition
is reasonable for ,eneral guidance, it is not sufficiently detailed to
describe to the a.,alyst what is involved in conducting a risk analysis.
The intent here is to describe the sequence of activities involved in
risk analysis.

In any risk anaiysis, there must be sme variable(s) or
area(s) of interest. Variables imply quantification. Areas, on the
other hand, constitute the protions of a system or program which cannot
be quantified. in the materiel acquisition process these variables or
areas of interest fall into three broad categories; project completion
times, project resource requirements/costs and systems effectiveness and
performance. In the case where there exists a requirement or program
objective for a variable or area of interest, risk is defined as the
chance that the variable or area of interest will not meet the stated
requirement or program objective. For example, in the development of a
weapon system, one may be interested in the chance that the syN.Lem will
not be fielded by a planned date or within the budget or resource
constraints.

In this context there is a sequence of three basic activities
that comprise any risk analysis in either program management or systems
analysis:

a. Identification of the variable(s) or area(s) of interest;

b. Consolidation of all information about the variables(s) or
area(s) of interest; and

c. Evaluation of the risks.
12



The identification of the variable(s) or area(s) of interest
is certainly one of the most important activities in any risk analysis.
If all of the important variables or areas of interest have not been
identified, the risk evaluation may not assess the dominant risks. In a
quantitative evaluation, this means that the risks have been under-
estimated, and in a qualitative assessment this means that all potential
problems may not have been considered. Unfortunately, very little
guidance can be given to the analyst on the identification activity.
It can only be recommended that the analyst examine thc history of
similar programs, become intimately familiar with the system in question
and systematically and thoroughly investigate all aspects of the current
program. The following is a suggested list of items which should be
examined at a minimum:

a. Requirements document (MN),

b. Program budget,

c. Program plan,

d. Design specifications,

e. System history,

f. Current problems, and

g. Similar systems.

In general, the primary sources of these data will be the
developing agency, testing agency, and the primary contractors.

Note that there are certain cases in which this identification
stage may seem unnecessary. For instance, if the directive is to eval-
uate the risk associated with a specific set of variables, no identifi-
cation seems required. In such a case, however, the analyst must be
careful to adequately address all the interdependences that may exist
among variables. In order to assess the risk associated with a specific
variable, he may be forced to become intimately familiar with the entire
program. Hence, the identification activity is still required.

Having identified the variables(s) or area(s) of interest, the
next steps are to consolidate and evaluate all information concerning
these factors. Depending on the particular application, this consolida-
tion and evaluation may be either quantitative or qualitative.

In certain applications, quantitative measures may be meaning-
less. For example, in system design, the developing agency will be
interest in pinpointing the potential problem areas of a particular design.
The consequences of these problems will then be evaluated so that fall-
back positions might be ':,veloped and tighter management controls can be

13



implemented for these high risk activities. For example, consider the
development of a component of a tank for which the design is well within
the state of the art. Assume, however, that the contractor is planning
to design and implement a new automated production line for this componcit.
Any problems encountered in the development of aUtoiated production line
will have a direct impact on the development of the component. What needs
to be monitored quite closely is not the development of the component,
but the development of the new production line. The identification of
this potential problem area and the evaluation of the possible conse-
quences of problems in developing this new production line certainly
constitutes risk analysis even though the chance of not meeting a program
requirement or objective is not Addressed explicitly or ne.essarily
quantitatively.

On the other hand, many instances will occur for which consoli-
dation and evaluation can be handled quantitatively. The variable of
interest may be a random quantity or a fixed unknown constant which must
be estimated by a random quantity. In either case, the primary objective
of the consolidation phase is to obtain (objectively or subjectively) a
representative probability distribution reflecting the uncertainty in the
variable. Having obtained this probability distribution, the analyst is
in a position to meaningfully evaluate the risk or the chance that the
variable will not meet the stated requirement or program objective.

The next section includes a stmmary of the specific techniques
addressed in this compendium as they relate to previously defined
sequences of activities of risk analysis.

1.3 CONTENTS OF THE COMPENDIUM

There are four sections in the compendium. The)y are

a. Subjective Probability,

b. Monte Carlo,

c. Network Analysis, and

d. Bayesian Statistics.

Each of these sections has been written such that the
comprehension of any section depends only on the information contained
it it and in the Introduction.

On the other hand, the reader, who is inter'ested in all of these
sections, is encouraged to read the sections in their order of appearance.
Although there is no rigid format for each section, the following infor-
mation is included:

14



a. General introduction to the technique(s),

b. Description of the technique(s),

c. Discussion of the relationship of the technique(s) to the
three risk analysis activities,

d. Discussion of the pros and cons of the technique(s), and

e. Summary and conclusions.

In the next few paragraphs, each of the preceding techniqueswill be described relative to the three general risk analysis activities

and the situations that frequently confront the analyst, especially in
quantitative consolidation.

In many risk analyses few data are available to estimate the
distribution of the variable of interest. In these instances subjective
techniques can be meaningfully employed during the consolidation activity
to quantify fnformation in the form of a probability density function.

Several of these techniques are categorized by the assumptions
about the expert's level of understanding of basic probability concepts
and by the unique questioning procedure used to elicit the expert's
judgement.

Of course there may exist situations where a group of experts
is available. In this same subjective probability section, a modified
Delphi procedure is presented as a method for consolidating group judgment
when estimating an Vnknown probability distribution.

The Delphi procedure may also be applicable in other identifi-
cation activities and in situations where comparison of alternatives is
difficult because quantitative models are inadequate. Although not risk
analysis activities, these type applications present an interesting method
for answering important questions in an uncertain environment.

A Monte Carlo procedure section is also included in the compen-
dium. Historically, Monte Carlo procedures have been invaluable in
situations where quantification of the uncertainty in a variable is
complicated by the fact that the variable is itself a non-trivial function
of several other variables. This situation commonly occurs in the
consolidation activity of many performance risk analyses.

Monte Carlo procedures are also used extensively in network
analysis to simulate network representations. These network analysis
techniques are an integral part of the consolidation activity in risk
analysis and allow one to model not only time and cost uncertainty, but
uncertainty in future events as well. Network analysis is particularly
useful in evaluating time and cost Aisks in development programs. Two
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network analyzer programs, PERT and RISCA, are described in detail in
the compendium. They were selected as being representative of the
techniques for handling different types of network representations for
different purposes.

While PERT analyses are generally used in project management as
a tool I planning, scheduling, and controlling program activities,
RISCA provides a framework for modeling project schedule, cost, and event
uncertainties for specific decision-making purposes. In the context of
risk analysis, RISCA provides a method for quantifying, in meaningful
summarized form, development time and cost risks. In addition, network
analysis techniques, like RISCA, can provide the foundation for struc-
turing a decision risk analysis.

The final section is devoted to Bayesian Statistics. Bayesian
Statistics enjoys a unique position in risk analysis. There frequently
exist situations where the analyst has both data and expert judgment to
draw upon in constructing the probability distribution of interest in the
consolidation activity. Bayesian statistics provides the analyst with a
tool for synthesizing all of this information into one probability
distribution which can then be used to directly estimate risks.

The authors recognize that man) people have given considerable
thought to risk analysis in the materiel acquisition process. Only
recently, however, has the concept of risk analysis been placed in
perspective in the activities of program management and systems analysis.
The definition of risk analysis presented in this compendium is an
attempt to bridge the gap between general guidance and practical
application.

16



CHAPTER 2

SUBJECTIVE PROBABILITY

2.1 INTRODUCTION

"The subjective or personalistic concept of probability is
relatively recent.* Its application to statistical problems has occurred
virtually entirely in the post World War II period, particularly in
connection with statistical decision theory. According to this concept,
the probability of an event is the degree of belief or degree of confi-
dence placed in the occurrence of an event by a particular individual
based on the evidence available to him. This evidence may consist of
relative frequency of occurrence data and any other quantitative or non-
quantitative information. If the individual believes it is unlikely an
event will occur, he assigns a probability close to zero to its occur-
rence; if he believes it is very likely the event will occur, he
assigns it a probability close to one.

"Those who accept subjective probability argue that in
assigning probabilities to events, other information in addition to past
relative frequencies of occurrence should be taken into account. To
make this point clear, let us consider an oversimplified, somewhat
artificial example. Suppose a company which purchases a product from
a certain supplier has had the following experience with shipments from
that firm: 1 percent defective items in each of 10 shipments, 2 percent
defective in each of 85 shipments, and 3 percent defective in each of 5
shipments. Assume all shipment contained the same number of items.
These data are displayed in Table 2.1

TABLE 2.1 PERCENTAGE OF DEFECTIVE ITEMS IN
ONE HUNDRED SHIPMENTS

Percent Defectives Number of Shipments

1 10

2 85

3 5

TOTAL 100

The concept was first introduced in 1926 by Frank Ramsey who presented
a formal theory of personal probability in F. P. Ramsey, The Foundation
of Mathematics and Other Logical Essays (London: Kegan Paul; New York:
Harcourt, Brace, F( World, 1931). The theory was developed primarily
by de Finetti, Koopman, I. J. Good, and L. J. Savage.
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"Suppose the purchasing company wants to know the probability
that the next shipment from this supplier will contain 2 percent defec-
tive items. In the absence of any further information, it seems
reasonable to assign a probability of 0.8S to that event. That is, since
shipments with 2 percent defectives occurred in 85 percent of the past
cases, the relative frequency of occurrence would seem to be a good
estimate of the probability in question. However, suppose the purchas-
ing company acquires some additional information. It learns that the
engineer who has been in charge of production for the supplier, and who
has been the key person responsible for the maintenance of the quality
level of the product has just resigned his position with the company.
Furthermore, it is known that his knowledge has not.been passed on to a
suitable replacement. Therefore, a deterioration in quality of the
product, at least until suitable remedial measures can be instituted,
seems reasonable. Should a probability of 0.85 still be assigned?

"In this case it certainly seems reasonable that the assignment
of probabilities should no longer depend solely on past relative
frequency data. The purchaser, as a practical business man, should
undoubtedly anticipate that shipments in the near future wil' -lisplay
quality levels different from those indicated by-the data in Table 2.1.
For example, percentages of defectives in excess of 3 percent are
possibilities for shipments in the near future, and somehow or other,
for decision-making purposes, the purchaser must reckon with the likeli-
hood of such shipments. What the purchaser now needs is a new distribu-
tion of all the percentage defectives he feels are possible with proba-
bility assignments attached to each. It might be argued that the
purchaser should wait until conditions within the supplier company are
again stable and reasonable assurance is given that acceptable quality
levels will be maintained. However, suppose the purchaser cannot delay
his decisions for that period, and must take appropriate action now.

"Subjective probabilities should be assigned now on the basis
of all objective and subjective evidence currently available. These
probabilities should reflect the decision maker's current degree of
belief. Reasonable persons might arrive at different probability
assessments because of differences in experience, attitudes, values,
etc. Furthermore, in general, these probability assignments may be
made for events which will occur only once, in situations where the
concept of a repetitive sequence of trials under uniform conditions
does not appear to be a useful model.

"This approach is thus a very broad and flexible one, per-
mitting probability assignments to events for which there may be no
objective data, or for which there may be a combination of objective
and subjective data. These events may occur only once and may lie
entirely in the future. However, the assignments of these probabilities
must be consistent. For example, if-the purchaser in the illustration
above assigns a probability of 0.40 to the event that a shipment will
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have 2 percent or less defective items, then a probability of 0.60
must be assigned to the event that a shipment will have more than 2
percent defective items." (See Reference 1).

The following section describes how the subjective probability
concept may be applied to the consolidation activities in a risk
analysis.

In conducting a risk analysis either to generate management
information or as a part of a systems analysis, the consolidation
activities may be complicated by a complete lack of data or the exis-
tence of very little data from which to estimate the variable(s). The
variables of interest may be random variables or unknown quantities, but
in either case, it must be assumed that the variables have been adequately
identified. In the case of the unknown quantity, the estimate of the
quantity is a random variable. In situations where no data or very few
data exist, subjective probability provides the only alternative to the
analyst in his effort to quantify the uncertainty in these variables.
The personnel from whom such personalistic probabilities are elicited
are usually engineers and scientists associated with the development
of specific components and subsystems of the overall weapon system. An
overview of some methods of eliciting subjective probability estimates
and subsequent distributions from these experts is presented in
Section 2.2.

Throughout the remainder of this chapter, the discussion of
methods and examples will be in terms of performance variables; however,
the reader should note 'hat these methods will apply analogously when
evaluating time and cost variables. Performance characteristics are
analyzed here only for purposes of continuity and comparability.

At the total system level, the appropriate variables
representing overall system performance can usually be expressed in terms
of a few critical system performance characteristics. These characteris-
tics indicate the system's capability in performing certain predefined
missions. Aircraft performance characteristics, for example, might
include speed, range, and altitude. However, in order to achieve
estimates for the performance characteristics at the system level, it is
first necessary to derive functional relationships for these system
performance characteristics (i.e., the dependent variables) in terms of
the appropriate subsystem component characteristics (i.e., the indepen-
dent variables).

The next stage is to interrogate the most technically
qualified people involved in each area of the system development regard-
ing their appraisal of component characteristic variability. Because
objective data are generally sparse in a development program, these

Hamburg, Morris; Statistical Analysis for Decision Making,
Harcourt, Brace & World, Inc., New York, 1970, pp 12-13.
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component ch4aracteristic appraisals will be in the form of subjective
probability distributions which will provide the basis for estimating
system performance characteristic uncertainty.

If possible, the subjective assessment should be made at
the subsystem component level where engineering experts will find it
easiest to relate to characteristic uncertainty. Simulation procedures
(e.g., Monte Carlo) can then be applied using the appropriate functional
relationships to obtain a measure of the uncertainty involved at the
system level.

For the purpose of bringing the derivation of subjective
probability estimates into perspective, consider the following example.
Suppose the development program involves a certain type aircraft w•here
the performance characteristics critical to the aircraft's mission
capability are defined to be speed, altitude, range,.and endurunce.
These performance variables which reflect overall system performance
are listed across the top of Table 2.2.

For each of these performance characteristics a des;ign equation
or relationship must be developed which reflects the influenct of the
subsystem component characteristics at the system level. Table 2.2
describes which component characteristics (Wg, Wf,... etc.) are involved

in the design equations for each of the project performance charactnris-
tics in the aircraft example.

The relationship for Vmax (the maximum, constant altitude,

level flight speed of an aircraft), for example, may be of the form:

Ar (2C 1) 1/2
195.5 + - 1.274 g 1/2

max max oeb2

Vmax SCD

For each of the component characteristics in this equation, subjective
estimates of its probability distribution must now be obtained. For
the aircraft example, Table 2.3 depicts a hypothetical set of distribu-
tions for the relevant components defined in Table 2.2. Simulation
procedures (e.g., Monte Carlo) can now be applied using the appropriat,•.
functional relationship to obtain the distribution of the performance
characteristic at the system level.

The following section provides a brief overview of several

of the more common techniques for eliciting subjective probabilities
at the component level. Each of these will then in turn be discussed
in detail.
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TABLE 2.2 PERFORMANCE AND COMPONENT CHARACTERISTICS FOR HYPOTHETICAL
AIRCRAFT DEVELOPMENT PROJECT 2

Performance Characteristics

Component Speed Altitude a Range Endurance
Character- (Va) (Ha) (Ra) (Em)

isisUismax max" max maxistics Units (mi/hr) (ft) (mi) (hrL

W lb x x x x

Wf lb x x

CD X
0

b ft x x x x

S t2 x x x x

e x x x x

T lb x x

C' lb/hr/lb x x
of T

W - initial gross weightg

Wf - final gross weight

CD - drag coefficient for zero lift
0

b - wing span

S - wing area

e - efficiency factor

T - thrust

S- thrust lapse rate factor

C' - fuel consumption

2 Timson, F. J.; Measurement of Technical Performance in Weapon System
Development Programs: A Subjective Probability Approach, Memorandum
RM-S207-ARPA, Decer'ber 1968, The Rand Corporation, p 15.
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TABLE 2.3 PROBABILITY DISTRIBUTIONS FOM COMPONENT CHARACTERISTICS
(INPUTS) IN HYPOTHETICAL AIRCRAFT DEVELOPMENT PROJECT 2

W g (Ib) 250,000 260,000 270,000 280,000 290,000

Wf (Ib) 130,000 140,000 150,000 160,000 170,000

p(W) .05 .10 .35 .30 .20

CD .015 .016 .017 .018 --
0

p(CD ) .10 .40 .30 .20 .
0

b (ft) 170 175 180 185 190

S (ft 2) 3,500 3,600 3,700 3,800 3,900

p(S) .15 .15 .35 .25. .10

e .70 .75 .80 .85 .90

p(e) .20 .25 .25 .15 .05

T (ib) 65,000 70,000 733,000 80,000 --

p(T) .15 .35 .25 .2S --

1.2 1.4 1.6 1.8 --

p (a) .20 .25 .30 .25 --

C' (lb/hr/lb .80 .85 .90 .95
of T)

p(C') .30 .30 .25 .15

2ibid., p 16.
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2.2 OVERVIEW OF THE TECHNIQUES

2.2.1 Choice-Between-Gambles Technique for Deriving Probability
Density Functions.

T41is method employs betting-type or gambling situations
to elicit inferred prohability of occurrence responses from the expert.
The expert proceeds to reveal indifference probabilities between a
hypothetical gamble and a real-life gamble involving a fixed level of
the variable of interest. By varying probabilities in the hypothetical
gamble and the level of the variable of interest, a subjective probabil-
ity distribution is obtained.

2.2.2 Choice-Between-Gambles Technique for Deriving Cumulative
Distribution Functions.

A cumulative distribution function of subjective probabil-
ities is derived based on the expert's revealed indifference characteris-
tic values. These values result from a hypothetical gamble versus real-
world-gamble (i.e., involving the variable of interest) betting situation
for a fixed level of probability. Each successive decision stage of the
procedure reveals a characteristic value within a specified interval of
values which divides the interval into equally probable sub-intervals.
Relating each specified value directly to a cumulative probability of
occurrence, a distribution function is obtained.

2.2.3 Standard Lottery.

A probability density function is derived for the component
characteristic variable of interest. Probabilities are inferred based
on a selected number of hypothetical lottery tickets chosen from a lot
of fixed size. The number of tickets chosen by the expert for each
defined level of the component characteristic directly infers his
subjective feelinp for the probability of realization of that characteris-
tic value.

2.2.4 Modified Churchman-Ackoff Technique.

No indifference assessments or betting decisions are required
in this technique. Instead, the expert is asked to make relative
probability-of-occurrence-type judgments (i.e., greater than, equal to,
and less than) between various sets of possible characteristic probabil-
ities. Then, he is asked to make numerical relative probability
judgments between values on the ordinal scale desired in the previous
decision stage. The resulting relative probability scale is directly
converted algebraically into a probability density function. This
technique is applicable only if the expert has an understanding of
probability theory.
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2.2.5 Modified Delphi Technique.

Group (i.e., at least 3 experts) subjective probability
distributions, as opposed to individual probability distributions,
are desired. Employing the Modified Delphi Technique, inaividual
probability responses are elicited, reasons stated regarding such
judgements are made, and all information is fed back to all respondents
in an iterative procedure. A group probability response for all
characteristic values is ultimately defined by averaging.

The techniques developed in this section for eliciting
subjective probabilities involve either asking the expert

(1) to make choices between different betting sý:uations,

(2) state preferences between combinations of component
characteristic values or

(3) evaluate responses in a group decision-making situation.

The resulting probability distributions are in the form of either a
probability density function or a cumulative distribution function.
Since each type of function is derivable from the other, the determining
criterion for 3electing a given technique is not the form of the output
but the expert's relative ability to respond meaningfully and validly to
each type of questioning and the expert's familiarity with the method.
In addition, it is imperative that the analyst administering the inter-
rogation be a skilled interviewer with an ability to establish the
necessary rapport required to promote candid discussions with the
appraisers.

A detailed discussion of each of the five questioning
techniques will now be presented.

2.3 CHOICE- BETIWEEN-GAdMIBLES TECHNIQUE FOR DERIVING PROBABII.ITY PENSITY

FUNCTIONS

2.3.1 Introduction.

'rhe objective of the Choice-Between-Gambles Technique is to
subjectivel.y derive a discrete probability density function of component

characteristic achievemert levels (i.e., the probability that a component
characteristic will achieve a specified level). The inputs for eliciting
these probability responses from the experts are composed of choice-
between-gambles or betting-type questions administered by the analyst.
It is believed by many authors in the field of subjective decision making
that this form of questioning results in a more realistic subjective
density function than a direct questioning approach. This latter method
of asking the expert directly what probability he attaches to a particular
outcome for a component characteristic, although simple in application,
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has little likelihood of success in most cases. Many individuals either
have no ability to think directly in terms of probabilities, or have
difficulty communicating them without the aid of an auxiliary tool such
as the one employed in this technique.

2.3.2 Description.

The technique is an iterative procedure which is initiated
by presenting two alternative gambling situaion:. The expert is asked
to choose between a real-world gamble involving values of a component
characteristic of the project in question with unspecified probabilities
and a hypothetical gamble involving two objective events, EI and E2 with

given objective probabilities, P(E1 ) and P(E2). The .x¢netary payoffs

for both gambles are made equal to facilitate the expert's ability to
discriminate. Next, the probabilities of the hypothetical gamble are
varied (starting with equal probabilities for E1 and E2) until the

expert is indifferent between the two gambles. Hence, the appraiser's
subjective probabilities regarding the outvomes of the real-world
gamble are inferred by the resulting probabilities from the hypothetical
gamble.

As an illustration of the above technique, consider a real-
world gambling s',tuation involving two possible thrusts of a jet engine
under development and a hypothetical gamble with possible events EI and

E 2 The payoffs are stated as: (1) $10 if one thrust is realized, and

$0 if the other thrust occurs; and (2) $10 if event E occurs, and $0

if event E2 is realized. Table 2.4 reflects this initial decision

situation.

TAbLE 2.4 DECISION SITUATION

Real-World Gamble Hypothetical Gaur'le

Payoff $10 0 Payoff $10 0

Thrust 36,000 lb not 36,000 lb Event El E2
+1,000 lb +1,000 lb

Probabilities ? ? Probabilities 0.5 0.5

The assumption is that if the expert chooses the real-world
gamble, hle ,iill receive $10 if a thrust of 36,000 + 1,000 lb actually
occurs, and $0 if any other thrust is realized. If he selects the
hypothetical gamble, he will receive $10 if EI occurs and $0 if E2
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occurs. Therefore, if his decision in the first round is to accept
the real-world gamble, then it is imiediately inferred that his subjec-
tive probability assessment that a thrust of 36,000 +1,000 lb will be
achieved is greater than 0.5. Thus, in the next decision rounds the
analyst will adjust the probability of occurrence of hypothetical event
El upward, and that for event downward. Tis procedure is thenSE1 E2

continued in an iterative fashion to the stage where the expert is
"indifferent to the two gambling situations. Suppose that this stage is
ultimately achieved at P(EI) = 0.7, P(E 2) = 0.3, then P(thrust = 36,000

+1,000) is inferred to be 0.7. This revised decision situation is
depicted in Table 2.5.

TABLE 2.5 REVISED DECISION SITUATION

Real-World Gamble Hypothetical Gamble

Consequence $10 Consequence S10 0

Thrust 36,000 lb not 36,000 lb Event r I 2
+1,000 lb +1,000 lb

Probabilities ? ? Probabilities 0.7 0.3

Havino obtained the probability of thrust equal to 36,000
+1,000 Ib, the next step is to change the thrust in the real-w orld
g-amble to the next interval that the expert will be able to discriminate
between its probability of occurring over that of the previous value.
At each successive stage, then, probabilities are derived for various
interval values of thrust. Finally, each endpoint of the density
function is determined when the expert is indifferent between the two
gambles, with P(E 1 ) = 0, and P(E 2) = I.

The resulting probability distribution for this example could
be as shown in Table 2.6.

TABLE 2.6 FINAL PROBABILITY DISTRIBUTION

Thrust (lb) Probability

32,000 +1,000 0.0

34,000 +1,000 0.2

36,000 +1,000 0.7

38,000 +1,000 0.2

40,000 +1,000 0.0
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has little likelihood of success in most cass. Many individuals either
have no ability to think directly in terms if probabilities, or have
difficulty communicating them without the tid of an auxiliary tool such
as the one employed in this technique.

2.3.2' Description.

The technique is an iterative procedure which is initiated
by presenting two alternative gambling situations. The expert is asked
to choose between a real-world gamble involving values of a component
characteristic of the project in question with unspecified probabilities
and a hypothetical gamble involving two objective events, E and E2 with

given objective probabilities, P(EI) and P(E2 ). The monetary payoffs

for both gambles are made equal to facilitate the expert's ability to
discriminate. Newt, the probabilities of the hypothetical gamble are
varied (starting with equal probabilities for E and E2) until the

expert is indifferent between the two gambles. Hence, the appraiser's
subjective probabilities regarding the outcomes of the real-world
gamble are inferred by the resulting probabilities from the hypothetical
gamble.

As an illustration of the above technique, consider a real-
world gambling situation involving two possible thrusts of a jet engine
under development and a hypothetical gamble with possible events E1 and

E2 . The payoffs are stated as: (1) $10 if one thrust is realized, and

$0 if the other thrust occurs; and (2) $10 if event E occurs, and $0

if event E2 is realized. Table 2.4 reflects this initial decision

situation.

TABLE 2.4 DECISION SITUATION

Real-World Gamble Hypothetical Gamble

Payoff $10 0 Payoff $10 0

Thrust 36,000 lb not 36,000 lb Event Rl 3E
+1,000 lb +1,000 lb

Probabilities ? Probabilities 0.5 0.5

The assumption is that if the expert chooses the renl-world
gamble, he will receive $10 if a thrust of 36,000 + 1,000 lb actually
occurs, and $0 if any other thrust is realized. If he selects the
hypothetical gamble, he will receive $10 if E occurs and $0 if E2
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The total of the preceding subjective probabilities equals
1.1 -- a result tUat obviously does not adhere to the probability axiom
which states that the sum of the weights assigned to any set of mutually
exclusive and collectively exhaustive events will equal 1.0. Thus, to
resolve this conflict, the analyst can either: (1) reassess the expert's
probabilities, or (2) normalize the derived probabilities by dividing
each one by the sum of all the subjective probabilities.

The potential advantages, limitations, and assumptions

pertaining to the Choice-Between-Gambles Technique are now presented.

2.3.4 Advantages.

This gambling approach derives probability density functions
through inference rather than direct questioning. As noted earlier in
the discussion, it appears that such an organized step-wise procedure for
eliciting judgments, which allows the engineer or scientist to choose
between alternatives rather than make direct probability judgments,
results in a more valid density function.

Compared to most other techniques discussed in this section,
this technique is not time consuming in its application. It is simple
to apply and results directly in a probability density function.

2.3.S Limitations.

As with the resulting distributions from all other techniques
discussed in this section, this technique produces only discrete
probability distributions. Of course, it is possible to obtain continuous
subjective probability distributions but the techniques require that the
subject be able to evaluate the entire distribution at one time. This
is not as easy as dealing with the distribution in pieces. Thus, con-
tinuous distributions are not discussed.

In addition, the expert may find it difficult to determine
the highest or lowest characteristic value for which he can state a
subjective probability due to his limited ability to discriminate between
values. However, a simple procedure for determining successive discrete
values is given below:

a. Start with the preceding value that has been given a
probability assessment.

b. Progress upward (or downward) on the scale of values
until the expert is able to state a simple probability preference
(greater than or less than) regarding the relative probabilities of
occurrence of the two characteristic values. If he is thus able to
state such a preference, then it is inferred that he is able to state
such a preference, then it is inferred that he is able to discriminate
between the two values.
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c. Employ the Choice-Between-Gambles Technique on this new
value.

d. Return to step a if the probability derived in c is
greater than 0; otherwise, stop at the last iteration.

As for all the techniques in this section, the resulting
probabilities represent the engineer's beliefs at a particular time
under existing conditions.

2.3.6 Assumptions.

It is assumed the monetary rewards offered as consequences
for correct responses are sufficient in magnitude to motivate the
appraiser in forming his judgments. It is assumed also that the
expert's concern for the project success, his integrity, and his
decision-making abilities contribute also to the degree to which his
judgments represent his personal beliefs.

It is also assumed that the appraiser is knowledgeable and
experienced in his field, and is sufficiently well-founded in
probability theory to respond meaningfully to the questioning procedure.

2.4 CHO ICE- BETWEEN-GAMIBLES TECHNIQUE FOR DERIVING CUMIULATIVE

DISTRIBUTION FUNCTIONS

2.4.1 Introduction.

The objective of this technique is to subjectively derive a
cumulative distribution function reflecting the chance of occurrence of
a range of component characteristic values up to and including
a specified limit value. Instead of changing the probabilities of
occurrence of hypothetical events to arrive at indifference between two
gambles (as in the previous technique), this technique involves fixed
probabilities of occurrence of hypothetical events, while the component
characteristic values of the real-world gamble are changed until
indifference is achieved.

2.4.2 Description.

Figure ?.l shows that the first decision stage of this
procedure involves: (1) a hypothetical ga!Ki, with events EI and Ro2

having equal probabilities of occurrence (i.e., P(HI) = 0.5, and (2)

a "real world" gamble with two bets b1 (the bet that the actual component

characteristic will realize a value greater than Td).
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As in the previous technique, the objective at each stage is
to achieve indifference between the two gambles presented. To achieve
this, the actual component characteristic value T1 (related to bets b,

and b 2) is varied until the expert cannot state a preference between the

real gamble and the hypothetical gamble. Thus, when indifference occurs
at the first stage, it is automatically inferred that the probability
the component characteristic value will be less than T1 is 0.5 and the

probability that the value will be greater than or equal to T 1 is 0.5.

This condition implies that the expert has a 50-50 chance of earning the
$10 outcome and a 50-50 chance of earning $0 if he chooses b 1 or b2 .

Having established T1 (the value which divides the density

function in half) the next lower stage (See Figure 2.,) involves two
gambling situations. The objective here is to divide the two halves
"of the density distribution (as defined in stage I) into two more halves.
This is accomp.lisLAd by deriving T12 (the characteristic value which

represents the 0.25 probability level of the function) and T2 (which

represents the 0.75 probability level). Thus, upon completion of
decision stage 2, the values T2, TV, and T,, divide the probability

density function into fourths with the probability that the value will be
less than T2 is one-fourth, the probability the value will be greater

than or equal to T2 and less than T is one-fourth, the probability it

will be greater than or equal to T1 and less than T, is one-fourth, and

the probability it will be greater than or equal to TF2 is one-fourth.

As Figure 2 1 indicates, the equal portions of the density
function are successively halfed at each subsequent stage of decision
making until the expert is no longer able to discriminate between values.

The hypothetical values presented in Table 2.7 (as a continua-
tion of the engine thrust example of the previous section) give values
resulting from the three successive stages of questioning.

TABLE 2.7 HYPOTHETICAL RESULTS OF QUESTIONING2
PROCEDURE ILLUSTRATID IN FIGURE 2.12

Ti Value (lb)

T1 18,000

T 2 36,000

T2' 40,000

2Timson, Op.Cit.M , p 52. 30



TABLE 2.7 (Continued)

T.
T1 Value (lb)

T 3 35,500

ST3 37,000

T T311 39,500

T3,,, 40,500

The correscponding probability distribution is displayed in Table 2.8.

TABLE 2.8 PROBABILITY DISTRIBUTION FUNCTION2

" T. P(t < TO)

35,500 0.125

36,000 0.250

37,000 0.375

38,000 0.500

39,500 0.625
/

40,000 0.750

k40,500 0.875/

/
/

/

The last step in the procedure is the derivation of the endpoint
values of the distribution. The lower end-point of the distribution (T.) /

will satisfy the condition that the probability of the actual value of
thrust being greater than TL is 1.0. The upper end-point (TU) will

represent the lowest value of thrust for which the probability of the
actual value being less than Tu is 1.0. The technique for deriving a

density function as outlined in the last section is useful for determining
these endpoints. For the thrust example, the appropriate values might
appear as in Tables 2.9 and 2.10.

2
Timnior, Op. Cit., p 52.
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TABLE 2.9 LOWER LIMIT

Real-World Gamble Hypothetical Gamble

Consequence $10 $0 Consequence $10 $0

Thrust < 35,000 lb anything Event X Y
else

Probability Probability 0.0 1.0

TABLE 2.10 UPPER LIMIT

Real-World Gamble Hypothetical Gamble

Consequence $10 $0 Consequence $10 $0
/

Thrust > 42,000 lb anything Event x Y
elseS/

Probability ? ? Probability 0.0 1.0

From these values, the probability distribution function in Table 2.11 is
inferred directly.

TABLE 2.11 PROBABILITY DISTRIBUTION FUNCTION OF TABLE 2.7 WITH
END-POINTS

2

T P(t 1 T)

35,000 0.000

35,500 0.125

36,000 0.250

37,000 0.375

38,000 0.500

39,500 0.625

40,000 0.750

40,500 0.875

42,000 1.000

2Loc. Cit., p 53.
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2.4.3 Advantages.

The cumulative distribution function derived by this techni-
que can serve the same purposes as the probability density function in
the previous section due to the fact that one function can be derived
from the other. Therefore, when both questioning procedures are
employed on the same individuals, both techniques together can provide
a check on the consistency of the expert's responses.

This technique also offers an alternative gambling approach
to the one previously described. Instead of varying the probabilities
of occurrence, a characteristic value within a given interval of values
is varied until the expert is indifferent between the occurrence of the
two groups of sub-intervals on each side of the specified value with
respect to fixed probabilities. Thus, for certain appraisers, it may
be easier to think in terms of the areas under various portions of the
density function rather than in terms of the probability points on the
density curve. It is to be understood that the expert is not required
to actually visualize the entire density curve. However, in the course
of the questioning procedure, he will in effect be revealing equal
probability intervals.

The probability considered in each betting situation remains
fixed at 0.50. This condition is the easiest for an individual to
comprehend because of common encounters in real-life with random pro-
cesses such as coin-tossing.

2.4.4 Limitations.

The primary limitation of this technique lies in the expert's
ability to respond when through further sub-division the probability of
occurrence of the interval becomes small.

In addition, determining the end point (0.0 and 1.0 cumulative
probability values) of the distribution requires the use of other
techniques mentioned in this section.

Adjustment of the final distribution table of values must be
made before sampling from the distribution. Looking at Table 2.10, the
probability that the thrust will be between 35,500 lb and 36,000 lb is
0.125. Therefore, for any randomly sampled probability between 0.125
and 0.250, the thrust thus chosen should be between 35,500 and 36,000
lb. A logical choice would be the midpoint, 35,750 lb. This appzoach
provides a reasonable solution te the problem.

2.4.5 Assumptions.

The following assumptions are made whenever the technique
is applied:
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1. The expert will be able to make more rational, consistent,
and correct judgments when presented with betting situations than if he
were asked to state probabilities directly. As stated previouslr, it
is felt that the expert will respond more meaningfully if he is exposed
to a systematic interviewing process than if he is asked to make direct
assessments.

2. The appraiser is a knowledgeable expert in the area of
concern.

3. The expert has been instructed in the basic concepts of
probability theory. He must understand the meaning of "probability of
occurrence" as employed in this section, as well as a conception of
probability density functions and distribution functions. We contend
that there is a direct relationship between the expert's knowledge of
probability theory and his facility in responding to tCe analyst's
questions.

2.S THE STANDARD LOTTERY

2.5.1 Introduction.

The objective of the Standard Lottery technique is the
derivation of a probability density function over all possible values
of a given component characteristic. Again, the procedure involves
presenting the expert with two gambling situations. This technique
"differs from the two previously discussed methods in that it does not
involve the process of varying actual probabilities or performance
levels until indifference is achieved. Instead, numbers representing
randomly selected lottery tickets from a batch of 100 are varied in an
attempt to achi.eve indifference. in essence, the number of such tickets
directly infers component risk probabilities.

2.5.2 Description.

The technique is based on the following basic lottery
description. In a lottery a contestant pruchases as many tickets as
desired. The more tickets he purchases, the greater his chance of

winning the contest prize. After the purchase of tickets is completed,
one number is randomly drawn from a lot of 100 equally likely numbers.
That is, each contestant fully understands that any number between 1
and 100 has ar, equal chance of being selected. The winning contestant
is that indivilual who owns a lottery ticket with the number on it
coinciding with the number selected. For example, a contestant might
have randomly purchased 40 individual tickets out of the lot of 100
tickets. If one of his tickets coincided with the number chosen, he
would be the winner. Before the drawing, this contestant knows that
he has 40 chances out of, 100 of holding the winning ticket regardless
of his method of selecting the purchased tickets. That is, he does not

I, 34
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feel that it would be worth the slightest effort to select tickets with
particular numbers on them; the probability that a lottery ticket in
the group numbered 1 to 40 will be the winning ticket, is equal to the
probability that a ticket in a randomly selected group of 40 tickets
will be the winning ticket.

The staudari iottery technique of eliciting a subjective proba-
bility density function employs the foregoing concept of a lottery. In
this method, the expert is presented with a hypothetical lottery of 100
lottery tickets (numbered from I to 100). This lottery is to be used as
a standard of comparison in helping the expert decide what probability
value to assign to the possible realization of a given component
characteristic level. The questioning procedure is as follows:

a. Specify a possible component characteristic value (e.g.,
thrust = 36,000 lb) for the real-world event.

b. Direct the expert to imagine that he is given a choice
between a certain number of tickets in the standard lottery with a prize
of value V (e.g., $10) and the right to receive the same prize if the
real-world event (i.e., thrust = 36,000 lb) is realized.

c. For a given initial number of lottery tickets (e.g., 30),
ask the expert which alternative gamble he feels has the greatest
chance of winning the prize: (1) the realization of the real-world
event, or (2) the holding of the specified number of tickets (i.e., 3C)
of a lottery of 100 tickets outstanding.

d. If one gamble is preferred over the other, next vary the
given number of tickets (i.e., increase if the expert chooses the real-
world event in step c, decrease if he chooses the lottery alternative)
and repeat the questioning of step c.

e. Repeat steps c and d until, in his opinion, the expert
feels the possibility of receiving the prize (e.g., $10) in the event
of, for example, thrust = 36,000 lb, has exactly the same likelihood as,
say, 70 tickets in the standard lottery. Thus, it is inferred that the
expert considers these two events equally likely. Thus, he assigns a
pribability weight of 0.7 (70/100) to the event thrust = 36,000 lb.

f. Employing steps a through e, the expert can proceed
analogously to assign probability weights to all other possible real-
world events.

Resulting from the questioning procedure above, a hypothetical
example of the final probability density table is shown below.
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TABLE 2.12 FINAL PROBABILITY DENSITY

Thrust (1b) No. of Tickets Implied Probability

32,000 0 0.0

34,000 10 0.1

36,000 70 0.7

38,000 20 0.2

40,000 0 0.0

The weights in the table above must, or course, ultimately sum
to 1.0. To achieve this, it will sometimes become necessary to repeat
the decision process and/or normalize the resulting probability values.
Hence, the table represents the placement of collectively exhaustive and
mutually exclusive events (e.g., thrust values) into n one-to-one
correspondence with a set of collectively exhaustive and mutual]ly
exclusive events in the standard lottery.

2.5.3 Advantages, Limitations, Assumptions.

Again, this technique provides an improved process for
eliciting subjective responses over direct interrogation. It is similar
to the Choice-Between-Gambles Technique for deriving probability deisity
functions and thus offers the same advantages, limitations, and
assumptions with one addition.

Since probability statements are n'ct made directly, the expert
with little probability theory background may be more comfortable with
this technique.

Of course, the success of the technique also depends upon the
engineers familiarity with the lottery-type betting situation.

2.6 THE MODIFIED CHURCHMAN-ACKOFF T'CINIQUL.

2.6.1 Tntroduction.

The Modified Churchman-Ackoff Technique differs from those
described heretofore in the following ways: (I) it does not involve
betting situations, (2) the expert is not asked to reveal indifference
values of the parameter in question, and (3) the expert is instead asked
to make "greater than," "equal to," or "less than" evaluations regarding
relative probabilities between two sets of values and relative
probability assessments with respect to the most probable characteristic
value. The resulting relative probability scile is easily transformed
into a probability density function and subsequently into a distribution
function.

36



2.6.2 Description.

In this technique, the expert must reveal a range of
possible values which the component characteristic could possibly
realize. Employing perhaps the Choice-Between-Gambles method of
deriving a density function, end point values of zero prooability of
occurrence must be specified. These values need only be any low and
high values which the expert specifies as having zero probability of
occurrence in the proposed system.

Next, individual values within the range of possible values
must be determined. These values, which will form the set of
comparative values for this technique, are specified by the following
approach:

(1) Start with the smallest.

(2) Progress upward on the scale of values until the expert
is able to state a simple preference regarding the relative probabilities
of occurrence of the two characteristic values. If he is able to say
that he believes one value has either a greater chance or a lesser
chance of occurring than the other of the two values, then it is
inferred that the expert is able to discriminate between the two values.

(3) Using the higher of the two previously specified scale
values as a new basis, repeat step (2) to determine the next value on
the scale.

(4) Repeat steps (2) and (3) until the high end point value
of the range of parameter values is approached.

Employing this procedure for the aircraft example, one might
obtain the results in Table 2.13

TABLE 2.13 CHARACTERISTIC VALUES FOR THRUST EXAIPLE

0I = 35,000 lb

02 = 36,000

03 = 37,500

C4 = 38,500

0S = 40,000

06 = 41,000

07 = 41,500
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The descending order of probability of occurrence can be
determined by applying the following paired comparison method.

Ask the expert to compare, one at a time, the first discrete
value (0i) of the set to each of the other values (02' 03., etc.),

stating a preference for that value in each group of two values that he
believes has the greater chance of occurring (denoting a greater proba-
bility of occurrence by >, and equal chance by =, and a lesser chance
by <). The following hypothetical preference relationships could result
for a set of 7 values (01 < @2' 01 < 03' Ol < 04' 01 < 05' 01 < 06'
01 = 07).

Next, ask the expert to compare, one at a time, the second

discrete value (02) of the set to each of the other values succeeding

it in the set (i.e., 03) 0 4 etc.). The following preference relation-

ships might result (02 < 03) @2 < 04' 02 < 5' > 06' 02 > 07).

Continue the process until all values (0.C have been compared

to the others. For example Table 2.14 lists preferences which might
result for the remaining thrust values.

TABLE 2.14 PAIRED COMPARISONS

0 3 vs 04"'" 7 0l vs 05,...,07 05 V's 6' 7 06 vS 0 7

03 < @4 E4 > 05 *5 (%6 06 > e7

03 > OS 04 > C, 05 C 7

03 > 06 04 > 07

0.3 > 07

Now total the number of times (0i) value was preferred over

other values. The results for this procedure are listed in Table 2.15.

List the values in descending order of simple ordinal
probability preference and change the symbols for each value from C.
to X. as shown in Table 2.16. 1J



TABLE 2.15 SUMMARY OF PREFERENCE RELATIONSHIPS

0 4 = 6 times

0 = 5 times3

05 = 4 times

0 2 = 3 times

06 = 2 times

O1 = 0 times

07 = 0 times

TABLE 2.16 TRANSFORMATION

Characteristic Value
(ib) Preference Rank New Symbol

38,500 04 1 X1

37,500 03 2 X2

40,000 05 3 X3

36,000 02 4 X4

41,000 06 5 Xs

35,000 01 6 X6

41,500 07 7 X7

Arbitarily assign a rating of 100 points to the characteris-
tic value with the highest subjective probability (e.g., XI). Then,

as in che first step, question the expert regarding the relative chance
of occurrence of each of the other values on the ordinal scale in
Table 2.16 with respect to the value at the top of the scale. Assign-
ing X a rating of 100 points, the expert is first interrogated as to
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his feeling of the relative chance of occurrence of the second highest
scale value (e.g., X2 ), with respect to X1 . Does it have 25 percent

chance? 60 percent? 70 percent? 80 percent? As much chance of
realization as X ? The relative probability rating, based on 100 points,

(i.e., 100 percent as much chance) will then be posted for X2 .
Next, question the expert about the relative chance of

occurrence of the next highest scale (e.g., XS) first with respect to

the most preferred value (XI), and second with respect to the second

most preferred scale value (X2 ). The resulting numerical ratings should

concur. For example, if the expert decides that X2 has 8/10 as much

chance of occurring as does XI, the ratings become X= 100 points and
X2 = 80 points.

If the expert expresses a belief that X3 has 1/2 as much

chance as X and 5/8 as much chance as X2 (as a validity check), this
confirms that the relative probability of occurrence rating for X3 is

50, and the scale becomes X1 = 100 points, X2 = 80 points, and X = s0
points.

Continue the process for each remaining successively lower
scale value on the ordinal scale shown in Table 2.16. Determine the
relative number of points to be accorded each value with respect to
the top scale value and with respect to all other values on down the
scale which are above the characteristic value in question.

In the event of minor disparities between relative probability
ratings for a given value, the average of all such ratings for that
characteristic value might be computed. For example, X4 might be
determined to be 3/10 as probable as XI, 1/4 as probable as X2, and 1/2

as probable as X3. The 3 absolute ratings for X4 are thus inferred to

be 30, 20, and 25 points respectively. The average of these ratings is
25. However, before averaging such figures, it might be beneficial to
have the expert reevaluate his relative ratings for X4 with respect to
XI, X2, and XS-

As a result of the above process, the relative probability
values shown in Table 2.17 might be attained.

TABLE 2.17 RELATIVE PROBABILITY RATINGS

RX1 = 100 probability points

RX = 80 probability points2
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TABIF. 2.17 (Continuca)

RX. = 50 probability points

RX4 = 25 probability points
'RX5 = 10 probability points

RX6 = 0 probability points

RX7 = 0 probability points

Finally, the scale of relative probability values can be
converted directly into a scale of actual probability density values
by letting P(Xl) equal the actual subjective probability of occurrence

of the highest value. Then, P(X 2 ) is then defined as

R(X2 )

R(X2) [P(X 1 )]

Similarly P(Xi) is defined as

R(X 0)

R(X1) 1P(XI)]

for i = 2, 3,...,7.

Assuming that the independent characteristic values evaluated
represent all possible values attainable by the component characteris-
tic, the respective probabilit-es must sum to i.0 (i.e., P(X1) + P(X2)

+P(X3 + P(X4) + P(X6) + P(X ) P(X7) 1.0). Substituting the

expressions for P(Xi), i = 2,...,7, it follows that

R(X1) 1 R(X1) R(X4)
+ R(X (X1)) R(X) [P(X.)] +- ([P(Xl)]

R(X 1 ) R(X1) R(X,)

R(XS) R(X6 ) R(X7 )
+ R l--- [P(Xl)) + R-• l- [P(Xl)] + R(X [P(X 1)1 1.

Solving this equation for P(X1 ), the remaining P(Xi), i = 2,...,7 can

he determined using the relationship
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R(X.)P (X i) = 1(l- -
P (Xi R( [P(X d]

As an illustration, consider the relative probability ratings
in Table 2.17. Using these values, the preceding equation is given by

P(X ) + -0 P(X1) + 50Q Po(X1 ) + 1-- P(X1) + 10 P(X1) I

1 100 1 ico 1 1010

Solving this equation, P(XI) = 0.377.

This value can be used to determine the remaining probabilities
as fol lows:

RX2

P(X 2 ) = 2 P(Xl) = 0.80(0.377) = 0.301

RX
P(X3) = RX---- P(Xl) = 0.50(.0377) = 0.189

RX4

P(X 4 ) = 4 P(X ) = 0.25(0.377) = 0.095

RXI

P(X5 ) = RX P(Xl) = 0.10(0.377) = 0.038

RX6
P(X6 ) = R X- ) = 0(0.377) = 0.000

RX7

P(X7) = R.- P(XI) = 0(0.377) = 0.000

The resulting probability density appears in Table 2.18.

TABLE 2.18 PROBABILITY DENSITY

Component
Characteristic

Value Probability

X / 0.377

X2 0.301
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TABLE 2.18 (Continued)

Component
Characteristic

Value Probabili

X 3 0.189

X4 0.095

X S 0.038

x6 0.000

X7  0.000

TOTAL 1.000

2.6.3 Advantages.

This technique offers an alternative to previous methods of
eliciting absolute subjective probability responses. In this case
relative probabilities with respect to one chosen most probable
characteristic value are derived. In some situations, the expert ma),
think it easier to make evaluations with respect to a characteristicl
state that he feels has the greatest possibility of realization.
However, at this writing the technique remains to be empirically tested
in this capacity.

2.6.4 Limitations.

In addition, this technique offers a systematic method of
checking the consistency of relative value judgments made by the experts.
This enhances the validity of the resulting probability distribution.!

The technique does not involve betting situations which are
generally considered more successful in eliciting correct responses.
Instead, it involves an untested approach of directly eliciting relative
percentage chances of occurrence statements for each value with respect
to the occurrence of other characteristic values (e.g., does a thrust
of 35,000 lb have half as much, or 70 percent, or 90 percent as much
chance of occurring as 38,500 Ib?).

As with the other techniques of this section, the probability
values are still judgments. This is, of course, the limitation of all
techniques involving subjective (as opposed to objective) decision
making.
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2.7 THE DELPHI PROCEDURE

2.7.1 Introduction.

The preceding techniques delineated in this section have
been directed at decision-making situations in which individual experts
are interrogated regarding subjective probability preferences. The
resulting functions were therefore assumed to be based solely on that
expert's knowledge, experience, and intuition. They are also assumed
to be void of external influence from other individuals. However, in
many situations there may exist a 'group of e)perts and a group proba-
bility density function may be sougfit instead of individual density
functions. This is based on the old saying "two heads are better than
one" or more generally "n heads are better than one." But how does one
draw upon this group judgment to estimate the ý,roup probability density
function?

Historically, the approach for obtaining a group consensus
has been the formation of committees, commissions, or councils. While
the basic philosophy may be sound, committees tend to pressure
individuals into conforming. The pressure to conform may not be applied
directly, but participants are certainly aware of this pressure. In
addition, all opinions may not be expressed because of the personalities
of the individuals and/or because of the relationship of the individuals
within the group.

Another drawback of the committee is its tendency to spend
a great deal of time discussing irrelevant issues. While the potential
for inefficiency is obvious, there is also the possibility that the
irrelevant information may degrade the groups opinion.

More serious than any of the preceding potential problems is
the possibility of a complete breakdown of the committee. Breakdown here
refers to an inability to arrive at a general consensus of opinion.
Consider the situation where there are several conflicting opinions.
The supporters of these opinions may get emotionally involved in
defending their positions and loose sight of the objective of the
committee. Even when an agreement is reached, it will probably not
represent the consensus of the group.

The Delphi procedure is an alternative to the committee
approach for eliciting a group judgment. It "attempts to improve the
panel or committee approach in arriving at a forecast or estimate by
subjecting the views of individual experts to each other's criticism
in ways that avoid face-to-face confrontation and provide anonymity of
"opinions and of arguments advanced in defense of these opinions. In one
version, direct debate is replaced by the interchange of information and
opinion through a carefully designed sequence of questionnaires. The
participants are asked not only to give their opinions but the reason
for these opinions, and, at each successive interrogation, they are
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given new and refined information, in the fomn of opinion feedback,
which is derived by a computed consensus from the earlier parts of the
program. The process continues until further progress toward a consensus
appears to be negligible. The conflicting views are then documented.
(Reference 3).

The primary features of Delphi procedures are:

a. Anonymity of the source of information among experts.

b. Iteration with controlled feedback of group responses
"from iteration to iteration.

c. Statistical group response (the prescribed measure is the
median) (Reference A).

It should be emphasized that the Delphi procedure has broader
potential in the analysis of uncertainty than in estimating a group
probability density function. However, since this is a subjective
probability section, this application will be discussed first.

Before continuing with the description of the application of

the procedure in estimating a group probability density function, some
experimental results will be presented. These experiments provide
indications that the procedure has merit and deserves consideration.

2.7.2 Experimenting.

Th.e results of three RAND experiments will be discussed
briefly. The objectives of these experiments were:

1. Examine "whether the use of iteration and controlled
feedback have an advantage over the mere statistical aggregation of
opinions." (Reference 4).

2. Compare "the performance of groups using face-to-face
discussion with groups employing anonymous, questionnaire-feedback
interaction." (Reference 4).

3. Examine whether the selecting of subgroups based on
self-ratings will produce better results when incorporated in the Delphi
procedure (Reference 5).

3Quade, E. S., and Boucher, IV. '.; Systems Analysis and Policy Planning,
Applications in Defense, Elsevier Publishing Co., New York, 1968, p 334.

4Dalkey, N.; An Experimental Study of Group Opinion, The Delphi Mlethod,
Vol 1, No. 5, September 1969, Futures, p 408.

5 Dalkey, N., Brown, R., and Cochran, S.; Use of Self-Ratings to Improve

Group Estimates, Experimental Evaluation of Delphi Procedures,
Technological Forecasting 1, 1970, p 283.

45



In all of these experiments, almanac type questions were
used. These type questions were used because the participants probably
didn't know the answers, but they could make an informed guess. In
addition, since the answers were known, improvement in responses could
be measured and responses could be compared.

1. The responsive results of these experiments were:

a. "On the initial round a wide spread of answers typically
ensued.

b. "With iteration and feedbrack, the distribution of
individual responses progressively narrowed (Convergence).

c. "More often than not, the group response (defined as the
median of the final individual responses) became more accurate."
(Reference 4).

2. There were two parts to the second experiment mentioned
previously. In the first part, "the basic result was that the median
response of the questionnaire group was more accurate in 13 cases and
the consensus of the face-to-face group was more accurate in 7 cases.
Considered as an isolated experiment, this result is not statistically
significant. However, when this experiment is considered with several
others showing the same kind of outcome, the results appear more
significant." (Reference 4). In the second part of the experiment,
face-to-face interaction was shown to have an overall degrading effect
on the groups responses. These results are also in agreement with other
experiments in which Delphi participants were put into groups after
participating in a Delphi exercise. In all instances, the responses
in the face-to-face group were degraded over the Delphi responses.
(Reference 4).

3. More accurate subgroups can be selected for many questions.
"In addition, answers to the remaining questions improve upon feedback,
so that a combination of subgroups selection and feedback produces a
significantly larger number of improved group responses than could be
obtained by feedback alone." (Reference 5).

For a detailed description of these experiments and their
results the interested reader should consult the above references.

What do these results mean? Certainly, they provide some
reasonable indications that anonymous iteractions with controlled
feedback has merit. In addition, there are indications that Delphi may

4 Ibid., pp 415-418.

5 IbidIi., p 283
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provide a better method for obtaining a group judgment and the use of
self-rating with the Delphi procedure may produce better results.
However, experiments such as these can never provide more than an
indicator because they lack some of the critical characteristics of
real-world situations, such as:

a. If the answers are not reasonable, the consequences are
not important.

b. The participants have no responsibility.

c. Real-world uncertain situations can probably never be
measured for accuracy.

d. Real-world questions are generally value oriented.

e. The respondents are not experienced in forming opinions
(i.e., the respondents are not representative of the type of individuals
who would be real-world participants) and aren't really experts.

f. The subject matter is not realistic (i.e., too many
diverse areas).

Of course, it is recognized that realistic experiments are
probably not possible. However, these comments are directed at those
individuals who might be inclined to draw strong inferences about real
world applications from these types of experiments.

In summary, these experimental results provide some good
indicators and valuable insight into the Delphi procedure, but they
do not provide conclusive evidence.

The next two sections will be devoted to a description of
two different applications of the Delphi procedure.

2.7.3 Application of the Delphi Proceduie for Estimating a Group
Probability Density Function.

The steps of the procedure for estimating a group probability
density function are outlined below for the jet engine thrust example.

Employing the first two steps of the modified Churchman-
Ackoff technique, each expert is asked to reveal his estimate of the
total range of values which the component characteristic could realize
and the individual values within this range which form the sets of
comparative values. Then, list all values specified by all of the
experts. These will form the list of values to be investigated. For
example, Table 2.19 lists the responses of five experts concerning the
values of thrust which they judged could be discriminated between on a
probability basis.
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TABLE 2.19 POSSIBLE CHARACTERISTIC VALUES BY EXPERT

Expert I Expert 2 Expert 3 Expert 4 Expert 5
(lb) (lb) (Gb) _(Ib) (lb)

28,000 29,000 30,000 28,000 30,000

31,000 31,000 32,000 30,000 32,000

32,000 33,000 34,000 32,000 34,000

34,000 36,000 37,000 33,000 36,000

37,000 "40,000 39,000 36,000 37,000

The list of characteristic values to be investigated are
included in Table 2.20.

TABLE 2.20 LIST OF POSSIBLE DISCRETE CIARACTERISTIC VALUES

Y1 28,000 lb

Y 2 29,000

Y3 30,000

Y4 31,000

Y 32,000

Y6 33,000

Y7 34,000

Y8 36,000

Y9 37,000

Y 39,000

"Y11 40,000

In the first round, randomly select a characteristic value
from the list in Table 2.20 and ask each expert to give an independent
estimate of its probability. One of the previously described techni-
ques might be employed here as a tool in eliciting each expert's
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subjective probability response. Each expert is qu-stioned alone. In
addition, interrogate each expert regarding his reasons for evaluating
the characteristic value as he did.

Arrange the probability responses from all experts in order
of magnitude, and determine its quartiles, QI, M, Q3 ' so that approxi-

mately one quarter of all estimates lie in each interval. For example,
for the selected thrust of 31,000 lb, the probabilities for experts
El, E2, E3, E4, and ES might occur as shown in Figure 2.2.

Reveal the values and responses of each interval to each
member, and if his estimate lies outside the first round interquartile
range, Qi, to Q3 , ask him to state his reasons why the answer should be

lower (or higher) than that of the 75 percent majority opinion expressed
in the first round.

Give'these new responses back to all respondents by communica-
ting the new range of the new quartile values, along with indL, endently
stated reasons for the estimates laying outside the 75 percent aaajority
opinion. The experts are now asked to consider the reasons given,
weigh their feasibility, and revise their own previous estimates
accordingly. For the thrust example, assume the second round scale is
as shown in Figure 2.3.

If newly revised probabilities still fall outside the second
round interquartile range, respondents are asked to state why they
found previous arguments unconvincing enough to draw them toward the
median.

In the third round, the quartile results of round 2 are
submitted to respondents along with the counter arguients elicited.
These respondents are then asked to make a final revision of their
estimates.

The mean value of the resulting round 3 estimates is taken
as the group response as to what the subjective probability consensus
for the thrust value should be. For the thrust example, the mean
third round subjective probability estimate for thrust 31,000 lb is

[2(0.275) + 2(0.300) + ('.325)]/S = 0.295 = P(Thrust = 31,000 lb) .

Now, repeat the procedure for a second possible characteris-
tic value. Normalize the distribution if necessary.

2.7.4 Other Applications.

Up to now, the analysis of uncertainty has been restricted
to the context where the analysis was part of a much broader analysis.
Further, it was assumed that the problem was well defined and the
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SEXPERT E4 E2 E1 E5 E3

PROBABILITY .15 .25 .3 .325 .4

Q1 m Q3

I I I I I 'P(N)
0 .1 .2 .3 .4 .5 .9 1.0

Figure 2.2 Probability Responses: IST Round.

EXPERT E4 E2 E1 E5 E3

PROBABILITY .251.275Ji.3 .325.35

Q1  M Q3

SI I I '"• I IP(N)0.1 .2 .3 .4 .5 .9 1.0

Figure 2.3 Probability Responses: 2 ND Round.

EXPERT E2 1E4 E1 E5 E3 I
PROBABILITY .2751.275 .3 .325.325

Q1 M Q3

, i iI I I I - - - P (N)
:•0 .I .2 .3 .4 .5 .9 1.0

Figu,'e 2.4 Probability Response: 3 RD Round.
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uncertain variables or areas had been adequately identified. However,
risk analysis includes more than consolidation of group information
in order to evaluate the risks, although the Delphi procedure can be
used in this manner. Consider the following questions:

a. What are the alternatives?

b. What is the best alternative?

c. What should be the future goals of an organization?

d. What is the most desirable policy?

e. What is the magnitude of the non-nuclear threat in
Europe in 1980?

f. What are the variables or areas of interest?

The answers to these type questions definitely are uncertain,
but the interest here is not in the explicit treatment or uncertainty.
More specifically, one is interested in considering the uncertainty
implicit in answering these type questions. These types of questions
address problem definition and situations where quantitative models are
inadequate. The models may be inadequate because the output measure is
not well defined (e.g., how does one measure desirability?), or the
measure may be a function of many variables, and the relationship between
these variables may be unknown. In any event, these situations do exist
and must be analyzed.

In addition, the last question demonstrates that Delphi pro-
cedures might be used in the identification procedure in risk analysis.
However, the reader is cautioned that this is not always the case, and
this procedure is no substitute for systematically investigating the
program. Without a good background, one would not be able to structure
the exercise or analyze the results meaningfully.

Usually there will be a group of knowledgeable people who
can be drawn upon to obtain answers to these types of questions. Since
there is generally no way of selecting one expert's opinion over another,
a group consensus of opinion is generally sought. Once again, the
analyst is confronted with the choice between the Delphi procedure and
the committee approach. %Ihich is the best way? No one can answer that
question for sure. It depends on the par'ticular situation. This
selection problem will be discussed in more detail later.

To illustrate that the Delphi procedure can be used in these
types of situations, two examples are presented in the next section.
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2.7.S Examples.

In this section, two examples of the Delphi procedure are
presented. In the first example, the procedure is used to estimate a
quantity such as the world population in 1985. In the second example,
a much broader policy question is addressed. It is hoped that these
two examples will serve to clarify the mechanics and underlying
principles of the technique. Both examples have been extracted verbatim
from Systems Analysis and Policy Planning, Applications in Defense by
Quade and Boucher.

"Example: Choosing a Number by Delphi. Consider
the common situation of having to arrive at an answer to
the question of how large a particular number N should
be. (For example, N might be the ustimated cost of a
measure, or a value representing its over-all benefit.)
We would then proceed as follows: First, we would ask
each expert independently to give an estimate of N, and
then arrange the responses in order of magnitude, and
determine the quartiles, QI, M, Q3, so that the four

intervals formed on the N-line by these three points
each contained one quarter of the estimates. If we had
eleven participants, the N-line might look like this:

N1 N N5 N N5 N6 N7 N N9 NO N
1 2 N3 N4 N5 N6 N7 N8 N.9 N10 N 1

' i II
SQ1 Q3

Second, we would communicate the values of QI, M, Q 3 to

each respondent, ask him to reconsider his previous
r estimate, and, if his estimate (old or revised) lies

outside the interquartile range (Q1, Q3 ), to state

briefly the reason why, in his opinion, the answer
should be lower (or higher) than the 75-per cent
majority opinion expressed in the first round. Third,
we would communicate the results of this second round
(which as a rule will be less dispersed than the
first) to the respondents in summary form, including
the new quartiles and median. In addition, we would
document the reasons that the experts gave in Round 2
for raising or lowering the values. (As collated and
edited, these reasons would, of course, preserve the
anonymity of the respondents.) Ie would then ask the
experts to consider the new estimates and the arguments
offered for them, giving them the weight they think the),
deserve, and, in light of this new information, to revise
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their previous estimates. Again, if the revised esti-
mate fell outside the second round's interquartile range,
we would ask the respondent to state bxiefly why he
found unconvincing the argument that might have drawn
his estimate toward the median. Finally, in a fourth
round, wc would submit both the quartiles of the third
distribution of responses and the counterarguments
elicited in Round 3 to the respondents, and encourage
them to make one last revision of their estimates. The
median of These Round 4 responses could then be taken
as representing the group position as to what N should
be.

"Example: Policy Advice from Delphi. The Delphi
technique can also be applied to broad policy problems.
For example, let us consider how it might be used to
uncover and evaluate measures that might hell) to speed
recovery of a nation after a thermonuclear war.

"'Phere are a nomber of reasons why an approach to
this problem via the development of a mathematical model
or a computer simulation might not be the most desirab'zS~way to proceed. If we had in irind six or eight fairly

well-defined and promising alternative postwar measures,
we might consider adding a "recovery" model to one of
the many models that have been constructed to compute

the damage caused by a nuclear attack. Assuming this
could be done, the alternatives could then be compared
in the traditional way used for comparing alternative
force structures, employing a rauge of different war
initiation scenarios and undertaking sensitivity
analyses of the t'ncertain parameters.

"But the concept of 'recovery' is not very well
defined. Very few of the many measures that might aid
the survival of a nation or an area after a thermonu-
clear attack have been studied extensively. The
emphasis so far has fallen primarily on measures such
as shelters and active defense, which seek to reduce
the immediate effects of the attack, rather than on
measures to speed recovery after the initial effects of
an attack have been experienced. Almost everyone has
ideas about recovery measures of this type that might
bu helpful, but seldom any well-developed notion of
their relative effectiveness and cost. Thus there is
a need to survey these ideas - to create an atmosphere
in which they mey be brought forth, subjected to critical
review, modified and ordered according to various
criteria with respect to their possible effectiveness,
acceptability, and costs, including social costs. The
Delphi technique is well-suited to this task.
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"In addition to the presence 9f so many ill-
defined alternatives, and the difficulties with the
notion of recovery, there are a number of other
reasons why an approach to the problem that puts
emphasis on informed judgment is desirable. The
decisionmakers who would use the study would clearly
be in the best position to judge the acceptability of
measures that might either require radical changes in
the prewar way of life or imply such changes for the
postwar period - for example, how far to violate the
rights of privacy or favor one sector of the economy
or country over another if nuclear war were to come.
But their decisions would necessari l, be based on
many lowly but importanL relationships that require
the intuition and ji,,jgment of specialists. leter-
mining objectives what we waint to accomplish in
the way of recove y and how we might distinguish one
tpe of postwar i,.orld from another - must also be
the responsibility of the decisionmaker. But how to
attain these objectives would require contributions
from many disciplines.

"The alternative provided by the Delphi technique
is to give up for the moment any attempt to compute the
state of the postwar environment at various times
after hostilities have ceased and instead to try simply
to rank alternative prewar policies on the basis of the
qualities that promise, in the judgmen. of specialists,
to contribute the most to postwir recovery. This
procedure cannot demonstrate beyond all reasonable
doubt that a particular course of action is best. At
most, it can assess some of the implications of choos-
ing certain alternatives over others. But the system-
atic searching out and partial ordering of promising
steps could be extremely valuable.

"We should be under no illusion that for this pro-
blem a Delphi procedure would be the easiest thing in
the world to carry out. in order to persuade the
proper people to authorize or to participate in such
a study, the following points would have to be brought
to their attention. One, the effort would not be
intended as a substitute for other research. Two, if
nothing else, it would highlight areas needing detailed
study and in general, stimulate further work. Three,
ideas provided in the course of the stu(Iv - because of
their possible half-baked character .. would be kept
anonymous unless attribution was specifically authorized.
And four, the entire effort, in terms of manpower, could
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be kept quite minor, even though as much as ten months
might be needed to complete the study, since getting
responses to questionnaires is just slow business.*

"Since the kind of survey being proposed is not
a statistical survey of the Gallup type, but an attempt
to generate ideas and to use the respondents to trace
out the interrelationships among these ideas and the
consequences of their adoption, it is immaterial whether
the respondents form a representative sample of the
initially known points of view. What matters is that
the viewpoints of persons with all major relevant back-
grounds have a chance of being voiced.

"Assuming that our study would involve a range of
experts both within and outside the organization con-
ducting it, the respondents might be organized into
several "units," so that the administrative task of
running the experiment could be kept simple. Each
unit might conaiit of a central committee of three plus
a panel of six to twelve respondents. The committee
chairman would be the person responsible for organizing
his unit's activiýy, for maintaining liaison with the
project director, and for transmitting the responses
of his unit. One or more units might be located within
the organization carrying out the study and the other
units at some of the various places where there is a
concentration of respondents. Alternatively, the
respondents might be dealt with directly or split into
functional groups or disciplines such as ecology,
economic growth, and so on.

"The inquiry itself could be broken down into four
to six successive rounds, each based on a suitably
formulated questionnaire. Only round one would
necessarily involve all respondents.

Incidentally, there exists an Act of Congress (5 U.S.C.
Sec. 139, c-e [1942)) that forbids a government agency to
conduct or to sponsor a study in which identically worded
questionnaires are circulated to more than nine respon-
dents without prior permission of the Bureau of the
Budget. Since the intent of the Act is to keep business-
men from being bothered with a continuous stream of
government forms - not to hamper scientific investigation
- users of the Delphi technique whose support comes from
government funds should not have difficulty obtaining such
permission. Of course, one could confine the respondents
(except for at most nine outsiders) to the researca organi-
zation (this includes consultants) or the sponsoring agency.

55



K

"The first questionnaire would contain, in addition
to the questions themselves, a brief background state-
ment explaining the purpose of the study. It would
include a statement that responses will be handled
anonymously, except that approval for the use of names
may eventually be asked in case certain suggestions
are deemed worthy of being recommended for further
action. Only the members of the steering committee
would initially be cognizant of the authorship of ideas.
In the statement suggestions would be included about
keeping the proposals in practical operational terms
and avoiding generalities. The respondents would be
urged to include all suggestions that they think should
be examined, even though they might be dubious about
advocating them.

"The following sample questionnaire incorporates a
number of these suggestions. Since it is addressed
more to the readers of this buok than to potential
respondents, considerable reworking would be required
before it could actually be used.

Questionnaire 1
This questionnaire is being submitted to you in an
effort to elicit fresh ideas on what steps should be
taken to reduce the problem of postattack recovery
after a thermonuclear exchange. We are not looking for
measures that reduce tha number of weapons impacting
(ABM, for example) or measures that reduce their
efficiency (such as shelters). Primarily we are look-
ing for ways to help restore agriculture and manufac-
turing and the structure of society and government.
An earlier study has suggested that the measures we
are seeking to identify and weigh fall into three
classes: preventive, which would aim at reducing the
damage to our resources, such as food stocks and water
and power sources; emergency, which would attempt to
deal with the distribution and management of supplies
to sustain the population after the war; and long run,
which would deal with recovery proper. Regardless of
your feelings about the probability of nuclear war and
the futility of such actions - in themselves or in
contrast to the results we might obtain if we contributed
equal resources to deterrence - ask yourself what measures
should be considered.

This effort is being conducted very much in the spirit
of a brainstorming session, except that it sets out to
collect ideas in written form rather than through the give-
and-take of open debate. At this stage, therefore, it
would be entirely in order for you to submit ideas even if
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you yourself consider them half-baked, or if you merely
regard them as worthy of further exploration without
wishing to endorse them, or if they would only gain full
meaning within an adequately elaborated context.
Remember that this survey is in no way intended as a
substitute for other research; indeed, its chief virtue
might be to highlight areas needing detailed study and,
in general, to stimulate further work.

Question A. If you were a close advisor to the
President, what actions would you advise him to con-
sider taking (including recommentation of legislation
to Congress) that might speed recovery after a thermo-
nuclear attack?

The following considerations - the list is by no means
complete - seem relevant to this question. You may wish
to delete or modify some items or add others. They are
offered only to spark thought, and are listed randomly
to avoid prejudging the order of importance or the
feasibility of any measures.

1. Since the control of infectious diseases could be a
serious problem in the disrupted postattack environment,
should current public health policies be reviewed for
possible changes that would improve their effectiveness in
a postattack situation? Vhat policies? What changes?

2. A number of studies indicate that fires, both urban
and wildland, as well as their sequelae of floods, ero-
sion, and additional fire hazards, could be serioas long-
term problems in the postattack environment. Is thore a
need to review current fire prevention and control prac-
tices for possible changes and innovations that could
improve our postattack capabilities to cope with these
problems? What changes might be made? It has been
suggested, for example, that we might undertake controlled
burning prewar and also create appropriate firebreaks to
prevent wildland fires from encroaching on contiguous
urban areas or to keep urban fires from spreading to the
countryside. We might also consider some steps to provide
forore-seeding burned areas postattack to reduce erosion
and flooding.

3. How serious a problem would it be to find feasible
alternative postattack land uses that would be keyed to
postattack requirements for food and other agricultural
products? For example, what other crops could be grown
on land too heavily contaminated with fallout to grow
food, or what food crops could be grown on land not
heavily contaminated but now used to grow non-food pro-
ducts?
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4. What priorities should be observed in restoration
of facilities postattack?

S. Should differential protection be provided for
different segments of the population?

6. Is organizational damage likely to be a serious
problem in the postattack environment?

Question B. What research should be undertaken by the
scientific and technical community that might either
lead to or accelerate the discovery of measures that
would help speed postwar recovery?

Again, here are a few possibilities that you may wish
to consider in your response.

1. Develop models. It might, for example, be imrjr-
tant to build a flexible modular fallout model, or a
model of the ignition and spread of urban fire and its
impact on population in the fire area, including the
protection afforded by available shelters against heat
and carbon monoxide poisoning. A model of wildland fire
that would relate ignition and spread to plant cover,
season of year, weather, geographical region, and the
nature of the nuclear attack might also be useful, as
would models of a disrupted economy, since current
models all seem to assume an organized society.

2. Perform further research. Research in atmospheric
physics, for example, might give us a way to estimate the
the effects of nuclear exchanges on weather and climate.
Similarly, research might be undertaken on ecological
disturbance or on the long-term genetic effects of
radiation on man. (Both of these problems have already
been studied in some detail, but much ignorance remains.)

3. Develop technologies for food storage and
synthesis.

4. Develop contingency plans for priorities in
resource allocation by age, by sector of the economy,
or by some other standard.

"Once the responses to this first questionnaire
had been received, the next, and hardest, step would
be for the steering committee to sort and collate them,
clarifying their meaning through checks with the
respondents if necessary, eliminating obviously non-
operational sugg"3tions, doing some minor editing and,
hopefully, generating useful additions to t:he list.
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"The list of proposals thus produced might then
be submitted either directly to the original
respondents or, as an intermediate step to obtain
further refinement, to the "unit" committees. The
result of this review might be the elimination of,
say, two-thirds of the proposals as being less
promising. The remainder would then be annotated by
the steering committee with brief arguments pro and
con; they might also be ranked by merit according to
some consensus formula.

"Because the wording of every questionnaire but
the first depends on the outcome of preceding rounds,
we can at best indicate only the form the remaining
questionnaires might take. The second might look
something like this:

Questionnaire 2
The tabulation given below contains a list of tenta-
tive proposals to speed postwar recovery. We would
like you to give us your judgment of each item in terms
of its desirability, its feasibility, and its potential
importance (assuming feasibility).

For each item, check one box under Columns A, B, and
C. In making this evaluation, consider the intrinsic
rather than relative merits of the proposal.

A B C
Desirtbility Feasibility Importance

13 M

(1 3.

00 3 a.0 a3 0 L.

No. Prpoa Qa CD 0 . - 3.

I Establish contingency
plans for priorities in

allocating resources

2 odify current public
health policies to in-
crease the possibility
of controllsh ingfec-
tious diseases after

,nuclear attack

•.oo9



This questionnaire would, of course, be accompanied
by written arguments, pro and con, for each proposal
listed.

"If the results of this appraisal indicate that
an item ranks no higher than 'doubtful' in any category,
it would be eliminated from further consideration.

"For the remaining items, some of which would
obviously be controversial in one or more aspects, more
exacting standards of acceptability would need to be
set. The next questionnaire would explore the reasons
for any divergence of opinions; it might take this form:

Questionnaire 3
The following items out of the list previously submitted
to you have been eliminated for the reasons checked:

Reason for Elimination
Item Description Undesirable Infeasible Unimportant

1 x.
3 X.
4 .. .. .. X

The following items have been accepted as being

desirable, feasible, and important.

Item Description

11 . . .. .

17

The remaining items are controversial in one or more
respects. In those cases where a check mark is circled,
your previously expressed opinion was at variance with
the opinions of several of the other respondents. For
each, please indicate very briefly why you hold this
particular opinion. (For example, if, in Item 6, a
check mark in the Desirability column is circled,
please explain why you gave Item 6 the desirability
rating you did in response to Questionnaire 2.)
Alternatively, if on reconsideration you do not feel
strongly enough about your previously expressed opinion
to defend it, please indicate this by stating a revised
rating.
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Reaoon
Controversial as to Previous Rating

Item Description Desirability Feasibility Importance or Revised Rating

2

6

"If the replies to this questionnaire continue
to move toward a consensus on some of the proposals,
or if for some reason the apparently irreconcilable
differences of opinion seem inadequately documented,
one or more additional questionnaires may be worth-
while. In form, these would resemble Questionnaire
3.

"What might the finai result tell us that we did
not already know or could not obtain from less
unconventional types of analysis? The answer can
be very brief. Many aspects of the postattack
recovery problem cannot be handled by standard cost-
effectiveness techniques. For example, how can one
assess the effect on the arms race of a prewar measure
such as the storage of materials for the recovery
period? Out example suggests that the Delphi technique
offers, at the very least, a way to approach such
questions." (Reference 3).

2.7.6 Basic Considerations.

As mentioned previously, whether or not one should use the
Delphi procedure depends on the particular situation. However, the
analyst, who is considering the procedure, should at least be aware of
the following considerations. In contrast to the committee approach
where the analyst or initiator's role is essentially complete when the
committee has been selected and tasked, the analyst's or initiator's
work just begins with the selection of the group in a Delphi exercise.
In either case, the selection of the participants is certainly not an
easy task. However, in a Delphi exercise, the selection task call be
restricted to determining who the experts are. On the other hand, the
committee selector must also consider the pers. alities of the partici-
pants and the possible face-to-face interaction problems. Certainly,
two long-standing enemies could not be placed on the same committee.
These same two people, however, could be included in a Delphi exercise.

3Quade, Boucher, Op. Cit., pp 334-342.
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Perhaps the biggest drawback in applying the procedure at
this time is that very few analysts have experience in using the techni-
que. In particular, there is a lack of training in preparing question-
naires and analyzing the results. One should not discount the
importance of such training. If the questionnaire is prepared by
unqualified people, the answers to the questions may be biased or the
questions themselves may not really address the problem. In addition,
since the procedure has had limited exposure, it may not be accepted
immediately. But this is to be expected with anything new.

Another important consideration in the selection of the
Delph procedure is time, both time available for conducting the
analysis and time involved in applying the procedure. Clearly, if
there is little time available for developing a consensus of opinion,
the Delphi technique may not be a viable altc,:native. The participants
may be spread out geographically and the questionnaire may have to be
distributed and collected by mail. Couple this time with processing
time and the fact that several iterations will probably be required,
and it is not too difficult to imagine the procedure being impractical
from a time response standpoint. In addition to the obvious time
consideration, if long periods of time elapse between the sessions then
the participants may lose their train of thought or may not be able to
reproduce their rationale. However, on-line computer systems offer hope
for reducing the time involved in a Delphi exercise, and a well planned
exercise should take into account the time between questioning sessions.
So this need not be a problem.

Next, one should consider whether the group responses can be
aggregared meaningfully. If there doesn't exist a meaningful way to
aggregate the group responses, one would probably not want to use the
Delphi procedure. This potential problem probably would be most preva-
lent in problem definition and policy formulation applications.

Finally, one must consider whether there are any popular
opinions that there may be pressure to conform to. For instance, in
the corporate environment it may be known that the president of the
company favors a particular policy. This fact may influence the
committee chairman to pressure the group or lead th, group in the
direction of the president's favored policy, even though it may not
represent the group's opinion.

While the preceding considerations are not the only things
that must be considered, they should, at a minimum, eliminate overlooking
the obvious in deciding whether or not to use the Delphi procedure.

2.7.7 Summary.

In situations where one wants to use group judgment to
analyze uncertainty, the De'nhi procedure provides an alternative to
the committee approach in the identification and consolidation
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activities of a risk analysis. It attempts to improve upon the committee
approach by allowing the exchange of information in an environment that
reduces the group pressure to conform and removes the impact of the
dominant individual. Its primary features are anonymity of the source
of information, iteration with controlled feedback, and aggregation of
group response.

Experiments give indications that this procedure may provide
better results than the committee approach, and that iteration with
controlled feedback improves the accuracy of the group response for
tactual questions. While the evidence is not conclusive, it is at
least sufficient to merit consideration of the Delphi procedure in
certain problem areas.

2.8 SUMMARY AND CONCLUSIONS

As a means of summarizing the relative attributes of the
five techniques described for estimating probability distributions, each
of these techniques will be assessed with respect to each of the follow-
ing criteria:

Ease of Application. Is the technique easy to apply?

Knowledge of Probability Concepts. Must the expert have a
good knowledge of probability theory?

Consistency Check. Does the technique offer a means of
revealing the consistency of the expert's responses, and thus, a meansof validating the resulting probability distribution with respect to

the "correctness" of the expert's judgments?

Time required. Is the application of the technique time
consuming?

Table 2.21 should provide the analyst with a handy reference
table for selecting a technique. It should be emphasized that the pro-
blem and the experts background will for the most part determine the set
of techniques that one could use. For instanue, if there was a short
time frame for the study and only one expert was available, we would
definitely rule out the Modified Delphi Technique and probably rule
out the. Modified Churchman-Ackoff Technique. From the remaining
techniques, the final selection would probably depend on the expert's
probability background. Tf he had no probability background, we would
probably use the standard lottery technique.
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CHAPTER 3

MONTE CARLO METHODS

3.1 INTRODUCTION

The Monte Carlo method is defined as "Any procedure that
involves statistical sampling techniques in obtaining a probabilistic
approximation to the solution of a mathematical or physical problem."
(Reference 1) The first documented use of the technique appeared in
Buffon's treatise "Essai d' Arithmetique Morale" in the year 1777,
(Reference 2). In this work, Buffon used the technique to approximate
the quantity 1/w (the ratio of the diameter to the circumference of a
circle). In order to approximate this quantity, Buffon created an
experiment for which the theoretical probability of occurrence of a
particular event was I/ff. He then simulated a series of trials of the
experiment and used the fraction of the time the desired event occurred
as his estimate of I/n. This example is typical of many of the early
applications where mathematicians were primarily interested in estim'.ting
areas or other geometric quantities.

The technique was soon discovered to have numerous applications
in many of the applied sciences, particularly Physics, Chemistry and
Operations Research. It has also been used extensively in the military's
war game modeling efforts. Since these applications are so extensive, no
attempt will be made to expound on them in this chapter.

Recently, Monte Carlo has been introduced in risk analysis as
a technique for approximating the distribution of critical decision
variables such as system time, system cost, and system performance.
Suppose, for example, that one of the critical performance characteristics,
w, of a weapon system must be greater than or equal to M to meet the
postulated threat. Further, w is a function of three independent random
variables X, Y, and Z. This is the type situation that could arise in
the following example. Consider a project to develop an aircraft and
suppose that the performance characteristics that are critical to the
aircraft's mission capability are speed, altitude, range, and endurance.
For the purposes of this illustration the discussion will be limited to
speed. The performance characteristic, speed, is a function of several
subsystem and component characteristics. The functional relationship of

IJames, Glenn and James, Robert; Mathematics Dictionary, Van Nostrand
Company, Princeton, New Jersey, 1964, p 260.

2Buslenko, Nikolai; The Monte Carlo Method, Pergamon Press, Oxford
England, 1966, p 4.
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these components or subsystem characteristics to the performance
characteristic is represented by a design equation. "The design equation
for the maximum, constant altitude, level-flight speed of an aircraft is
given by

195.5 . . . .X A 19S+ AX " 1.274 C:b )
VMAX SC D

0

where TA = maximum'thrust avail.able (assumed.independent of speed),

CD = drag coefficient for zero lift,
(0)

S wing area,

W = gross weight of the aircraft,g

a altitude density ratio,

e = efficiency factor, and

b = wing span." (Reference 3)

Now for the postulated threat, the requirements might be for
a VMAX to be at least V, and it would be useful to know the probability

of meeting or exceeding V. However, to estimate this probability, the
distribution of VMAX must be estimated. Given the preceding functional
form of V MAX and estimates (objective or subjective) of the distributions

of TMAX, CD S, b, e, and gi, it may be difficult if not impossible to

derive the distribution of VMAX exactly with standard statistical tools.

However, given the design equation and the distributions of the compo-
nents, the Monte Carlo technique can be used to construct a sample
distribution for VMAX*

Risk analysis applications, such as the preceding, are dis-
cussed in detail in Section 3.3. They are followed by a discussion of
both the limitations of the technique and the abuses often encountered
in practice.
3Timson, F. S.; Measurement of Technical Performance Weapon System
Development Programs: A Subjective Probability Approach, Memorandum
RM-52-7-ARDA, p 12.
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Before proceeding with the risk analysis applications, however,

a detailed description of the Monte Carlo procedure is provided in
Section 3.2.

3.2 DESCRIPTION

The Monte Carlo procedure discussed in this compendium is
sometimes referred to as "crude" Monte Carlo. Other sampling procedures
exist and can be useful in problems where estimators are computed from
the sample. For these problems, the other procedures -- called variance
reduction procedures or Monte Carlo techniques --- can be used to get
estimators with smaller variance than the "crude" Monte Carlo estimator
for the same sample size. These techniques will not be discussed in this
compendium. For the reader interested in learning about variance
reduction, Reference 4 is recommended.

Basically, the Monte Carlo procedure is used t9 generate a
sample distribution of'a random variable whose distribution is unknowfn by
taking into consideration an existing functional relationship between this

random variable and others whose distributions are either known or can be

estimated (objectively or subjectively). Consider, for example, a random

variable Z whose distribution is unknown, but which is linearly related
to two independent* random variables X and X2, whose distributions are

known. Suppose the relationship is Z = 2X1 + X2. Sample values for

either X and X 2 are generated by randomly selecting a number between

zero and one using a table of uniform random numbers or some computer
housed .random number generation routine. Given this random number, say
£, the sample value is obtained by finding the value such that the proba-
bility that the variable of interest does not exceed this value is equal

to Z. This sample value is unique and can usually be obtained directly
from the cumulative distribution function of the variate of interest.

The sample values for X1 and X2, generated in this manner, cin

now be used in conjunction with the relationship Z = 2X1 + X2 to obtain

the corresponding sample value for Z. By repeating this procedure many
times, a sample distribution for Z is obtained which approximates the

Independence is not a necessary conr.N rori, but the procedure must be

altered slightly to handle de-%ndent variables. A detailed example of

a Monte Carlo application fc, che dependent case is contained in

Section 3.3.

4 Hillier, Frederick S ;: Lieberman, Gerald J.; Introduction to Operations

Research, Holden Day, '.c., San Francisco, California, 1969, pp 452-462.
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distribution of Z. Generally, a large number of samples must be taken in
order that the distribution for each of the variables is adequately
represented in determining the distribution of Z. The actual number of
samples required is not easily determined and depends on the specific
application.

The following is a suggested approach for determing an adequate
sample size for a particular problem. Initially take a sample of size
50. Add another 50 sample values. Compute the sample mean and sample
variance and construct a frequency histogram for the initial 50 sample
values and for the combined sample of size 100. If the sample means,
sample variances or the shape of the histogram change significantly,
it may be advisable to increase the step size to 100. In this case, the
additional 100 samples would yield a sample size of 200 and from this
sample, the mean, variance and the histogram can be compared with
the means, variances, and the histograms for the smaller sample sizes.
This procedure should be continued until the sample meaTn, sample variance,
and frequency histogram appear to be converging. Note that the step size
is critical in the sampling procedure. When 100, 200, or 300 samples
have been taken an increase of SO samples should be enough to detect
changes in the sample distribution. However, if it becomes necessary to
take in the order of 1000 samples, an increase of 50 samples may no longer
be sufficient to detect differences. The possibility exists that steps
of 50 will yield successive histograms which are not significantly
different and yet the sample distribution has not converged. Thus, it
may be necessary at points in the sampling process to increase the step
size.

To illustrate how to determine the appropriate sample size,
consider a sample from a standard normal distribution. The object is to
test the sample distribution of Z for convergence. Each of the component
distributions could be tested for convergence but this would not be
sufficient to imply the convergence of the distribution for Z. In most
cases, the mean and variance of Z are not known and therefore it is
necessary to look at successive differences in sample mean and variances
to determine convergence. For this example, it is known that the mean
is zero and the variance is one.

The results of an initial sample of size 50 from a standard
normal distribution are exhibited in Table 3.]. The sample mean is
0.030 and the sample variance is 0.808. By taking an additional 50
samples, the new mean is 0.088 and the variance is 0.875. Noting the
differences in the variance and the histograms, one might decide to
increase the step size to 100. Continuing with this procedure, it was
discovered that 2000 samples are necessary for the histogram and the
variance to converge. After 2000 samples, the sample mean is 0.0093 and
the sample variance is 0.963. Figure 3.1 shows a sequence of histograms
for samples of size 50, 100, 200, 300, 400, 500, and 2000. Note that for
50 and 100 the sample distribution is not shaped like a normal but at 200
it begins to smooth out. After 2000 samples, the histogram looks very
much like a normal distribution and the sample mean and variance are close
to the values zero and one, respectively.
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TABLE 3.1 SAMPLES FROM A NORMAL DISTRIBUTION

SAMPLE MEAN = 0.02999 SAMPLE VARIANCE = 0.80803

SAMPLE VALUES

-1.29421 -1.49644

0.38794 -1.52057

-0.20092 -0.00237

0.89694 -1.10802

0.13029 -1.16548

-0.55059 -0.51442

0.32322 0.68557

1.48328 0.38922

0.00667 -1.27034

1.11237 0.91550

-0.67990 -0.35313

1.56721 -0.33873

-0.]7174 0.30416

-0.58121 -0.48749

0.52735 0.90747

0.19513 1.18899

-1.52726 0.53870

0.58078 1.03950

0.57217 -0.07838

0.45187 0.80814

-0.53651 -0.68425

-0.73362 0.69994

0.45915 0.80145

0.70783 1.68601

-1.95595 -0.60831
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Figure 3.1 Frequency Histograms.
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Once an adequate number of samples for Z have been taken, the
frequency histogram gives information about the distribution of Z that
may aid in the solution to a problem. It indicates whether the distri-
bution is symmetric about the mean or skewed right or left. It also
indicates where the modes and the median are.

3.3 RISK ANALYSIS APPLICATIONS

In this section, four examples of Monte Carlo applications to
Risk Analysis problems are presented. Two of these examples deal with
independent random variables and the others (Examples 2 and 4) illustrate
how Monte Carlo can be applied in a dependent situation.

Example 1: The total cost of a system is seldom known with
certainty since the estimates are generally based on uncertain contract
costs and generally no field experience exists to use in estimating
operating cost. However, if the costs are broken down into the elements
of Research and Development, Investment Non-Recurring, Investment
Recurring and Operating costs, then the uncertainty in these elements can
be estimated. In this case the total cost is the sum of the costs
associated with each of the individual cost categories. Therefore, given
the estimates of the distributions of the elements and assuming that these
distributions are independent, it is possible to use Mcinte Carlo to
estimate the distribution of total cost of a system.

Example 2: Consider the problem of comparing the effectiveness
of two weapon systems, say System A and System B. Suppose that System A
distributes it's payload uniformly in a rectangle centered at the aim-
point and System B distributes its payload uniformly in a circle centered
at it's aimpoint. It will also be assumed that wind and other extraneous
factors cause the center of the payload patterns to be randomly offset
from the aimpoint (say at some random distance and random angle). Given
a target shaped as in Figure 3.2, an aimpoint, and a random offset, one
can determine the probability that a munition will hit the target. This
probability will be the fraction of the payload pattern that intersects
the target. Figure 3.3 exhibits a hypothetical situation where the area
of the shaded regions divided by the area of the appropriate payload
pattern represents the fraction of the bombs that hit the target. Given
an aim point, this probability will vary depending on the value of the
random offset.

If the distributions of the offset are known (possibly circular
normal) for both weapon systems, Monte Carlo can be used to determine a
sample value for the offset which will in turn immediately specify the
shaded regions. The areas of these shaded regions can then be approxi-
mated by repetitive randomly selecting points inside the rectangular
pattern and similarly inside the circular pattern and using as the esti-
mate of the area of the shaded region the fraction of the total samples
from the respective pattern which fall inside the target area. Thus,
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Figure 3.2 Target Region.
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Figure 3.3 Target Region With Payload Pattern Distribution.
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given an aim point and a sample value of offset, the probability of
hitting the target by a particular weapon system can be obtained using
Monte Carlo procedures. Repeating this process by choosing other sample
offsets, a sample distribution of the probability of hitting the target
can be obtained.

Example 3: "Consider the problem of generating a probability
distribution for the life of a two-component electronic device, based
on the known probability distributions for the operating lives of the
components (tubes), and the design equation which reflects the behavior
of the device in terms of the behavior of its components. The design
equation in this case states that the device fails if either one of its
components fails.

"Suppose that the life characteristics of two electronic tubes
are as shown in Figures 13 and 14. To use the MIonte Carlo technique,
these curves must be changed from density functions to distribution
functions. This is lone in Figures 15 and 16. Values along the proba-
bility scale of the distribution function are selected by means of a
table of random numbers. In the case shown, the digits 0 to 9 can be
used. (In cases where the probabilities involve two digits, pairs of
digits must be selected from a random number table.) When a random
number is selected, a horizontal line is drawn from the Y-axis on the
cumulative probability curve until it hits one of the vertical lines.
This determines a value for the life of the tube. ror example, if the
random number is 8, then the life of Tube No. 1 is 260 hours. To
facilitate working out this example, the data in Figures 15 and 16 are
converted into tabular form in Tables 12 and 13.

1.0 1.0

.8 - .8

U. .6 - .
.0 0

z .4 - .4

0 0

S.2 0 II t  ,
200 220 240 260 280 300 200 220 240 260 280 300

LIFETIME (h) LIFETIME (hr)

Figure 13-Life Curve Figure 14-Life Curve
for Tube No.1 for Tube No.2
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Figure 15-Cumulative Probability Figure 16-Cumulative Probability
of Failure for Tube No.1 of Failure for Tube No.2

"To deti.rmine a sample lifetime for the electronic device,
a sample lifetime is determined for each tube and the shortest is the
lifetime for the device. Suppose the sample lifetime for Tube No. 1 is
260 hours,

TABLE 12

SAMPLING DISTRIBUTION FOR TUBE NO. 1

"Corresponding Life
Random Number of Tube No. 1

9 270 hr
8-7 260
6-3 250
2-1 240
0 230
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TABLE 13

SAMPLING DISTRIBUTION FOR TUBE NO. 2

Corresponding Life
Random Number of Tube No. 2

9-7 260 hr
6-4 250
3-2 240

1 230
0 220

as determined above. Another random number is drawn for Tube No. 2.
Suppose it is 3; the lifetime of Tube No. 2 is then 240 hours. In this
instance, the lifetime of the device is 240 hours.

"To determine the distribution of lifetimes for the device, the
above process is repeated a large number of times. The frequenciec of
the observed lifetimes of the device are plotted as a bar chart. fhis
results in a life curve for the device. The number of times that this
process is repeated depends on the desired accuracy. The larger the
number, the more accurate the resulting life curve will be. Accuracy
requirements vary among applications.

"For illustrative purposes, the life curve of the two-tube
electronic device is determined by obtaining a sample of 25 pairs of
lifetimes for the two tubes. First, a table of the form of Table 14 is
set up.

TABLE 14

TWENTY-FIVE SAMPLES OF THE LIFETIME FOR A TWO-TUBE ELECTRONIC DEVICE

Tube No. 1 Tube No. 2

Random Lifetime Random Lifetime Device
Numbera (from Table 12) Number (from Table 13) Lifetime

0 230 hr 9 260 hr 230 hr
5 250 4 250 250
4 250 2 240 240
0 230 1 230 230
8 260 0 220 220

0 230 6 250 230
0 230 6 250 230
2 240 6 250 240
5 250 7 260 250
7 260 9 260 260
5 250 2 240 240
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TABLE 14 (Continued)

TWENTY-FIVE SAMPLES OF THE LIFETIME FOR A TWO-TUBE ELECTRONIC DEVICE

Tube No. I Tube No. 2

Random Lifetime Random Lifetime Device
Numbera (from Table 12) Number (From Table 13) Lifetime

8 260 hr 0 220 hr 220 hr
4 250 5 250 250
6 250 8 260 250
5 250 9 260 250
4 250 8 260 250
1 240 2 240 240
3 250 5 250 250
9 270 1 230 230
8 260 9 260 260
4 250 9 260 250
3 250 3 240 240
1 240 0 220 220
5 250 5 250 250
6 250 0 220 220

aRandom numbers taken from Table 7-3 of Reference 5.

Then random numbers, 25 of each tube, are obtained from Tables 12 and
13. The lifetime of the device is the lifetime of the first tube to
fail. A table of the frequencies of the various lifetimes of the device
is constructed (Table 35).

TABLE 15

LIFE CURVE DERIVED FROM TABLE 14

Device Lifetime Frequency % or Probability

220 4 .16
230 5 .20
240 5 .20
250 9 .36
260 2 .08

21.00

"These results are plotted as probabilities of failure (the
life curve) in Figure 17, and as cumulative probabilities of failures
in Figure 18." (Reference 3).

3Timson, F. S.; Op. Cit., p 59-64.
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Electronic Device

Given the information in Figures 17 and 18, it is possible
to etimate the probability of exceeding an electronic device lifetime
of 230 hours (0.64). This type of information should be of value to the
decision maker.

Example 4: Consider the problem of determining the distribution
of the effectiveness of a missile against a threat over the entire per-
formanwe envelope. This performance envelope can be broken down into a
discrete range-altitude grid (See Figure 3.4). Assume the effectiveness
(eii ) of each range (R; j=1,2,3) and altitude (Ai; i=1,2,3) zone can be

estimated, and the frequency of intercept at a particular range given
an altitude of attack cnn be estimated. Then the effectiveness
distribution of the missile over the entire performance envelDpe can be
approximated using the Monte Carlo technique. In this instance, the
intercept range is dependent on the altitude, but since the distribution
of altitude and distributions of range given altitude have been estimated
(see Table 3.2), the following Monte Carlo procedure can be used to
approximate the distribaition of effectiveness.
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Figure 3.4 Range Altitude Grid.

TABLE 3.2 DISTRIBUTION OF ALTITUDE AND DISTRIBUTIONS OF RANGE GIVEN
ALTITUDE

Altitude A1 A2 AS

Distribution .3 .S .2

Distribution of Range Given Altitude

Range/Altitude R1  R2 R3

A3  .3 .3 .4

A2  .2 .3 .S

A1  .8 .1 .3
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a. Sample from the distribution of altitude to determine thp
altitude.

b. Given the altitude, sample from the distribution of range
given altitude to determine the sample value of effectiveness.

c. Repeat a and b until an adequate sample distribution has
been obtained.

3.4 ADVANTAGES AND DISADVANTAGES

Monte Carlo allows one to approximate the distribution of a
random variable when other methods cannot be used. This is often the
case when the variable of interest, Z, is a complicated function of
several other random variables. In cases where the distribution of Z
cannot be derived analytically, provided a large enough sample has been
taken, Monte Carlo gives valuable information about the shape of the
distribution and also provides a means for obtaining a reasonable estimate
of the important population parameters.

Unfortunately, however, in many situations Monte Carlo problems
require very large sample sizes which often result in lengthy computer
runs. However, since the technique is easy to use and since it always
produces results, the length of the computer runs is often overlooked
and the technique is used in cases where another approach may be more
exact and/or less expensive to implement. For example, suppose we wish
to determine the total cost of a system and we know that the component
costs are normally distributed and independent. It can be shown that
under these conditions the total cost is normally distributed with mean
equal to the sum of the component means and with variance equal to the
sum of the component variances. For this problem, it would be foolish
to use Monte Carlo since it can only give an approximation for a
distribution which can be determined analytically.

Likewise, other applications may occur where Monte Carlo is
not the best approach. For instance, the variate of interest, Z, may be
a relatively simple function of random variables with known distribution.
in this case, standard mathematical statistics techniques may result in
an exact solution for the distribution of Z.

In other cases, areas which can be approximated by using Monte
Carlo can be determined exactly using integral calculus or approximated
using a technique such as Simpson's rule using less computer time while
maintaining the same degree of accuracy.

Another consideration should be the precision of the technique.
Often precision may be inferred when in fact this is not the case. This
does not meap that the technique produces imprecise sample distributions,
but serves to caution the reader that the output of Monte Carlo is only
as good as the input (i.e., estimates and analysis).
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There are two specific areas which may degrade the results.
First, if the component distributions were derived subjectively, the data
may be biased, and secondly, there may be disagreement among the experts.
In these cases it is possible to question the expert(s) and test the
sensitivity of the distribution of Z to changes in the component
distributions.

Another desirable trait of the technique is that it is readily
applicable in dependent situations when the conditional distributions
can be detenmined. In some cases, however, a reasonable estimate of the
conditional distribution is not available. If the variables are only
weakly correlated, the sample distribution generated by sampling
independently may be adequate. On the other hand, the following example
illustrates how misleading the independence assumption can be when the
variables dre actually highly correlated. Suppose Z = X + X2 where

X2 = -X1. Z, in this case, is identically zero and hence the variance

of Z is also zero. If X has mean zero and variance a2 , then the Monte

Carlo simulation would give a sample distribution for Z with mean

approximately zero but with variant,, approximately equal to 2a2. Thus,
the analyst must be extremely careful when dependence is suspected. A
significant portion of the analysis should be devoted to an examination
of the dependence between variables.

3.5 CONCLUSIONS

Monte Carlo is probably the most well known tool available to
the risk analyst. As such, it will probably be used widely, but it is
hoped that it will be used with discretion. A careful examination of
dependence is required in the initial stages of any application.

As indicated in this section, Monte Carlo should have its
greatest impact in estimating the uncertainty in the performance
capability of a system. It is also of great value in the analysis of
probabilistic networks. This application was not discussed since network
analysis is discussed in detail elsewhere in this compendium, and in
these discussions the role of Monte Carlo is elaborated upon.

It should be emphasized again that to estimate the uncertainty
in time and cost other than in probabilistic networks (assumiing the
component variables are independent) the technique is not usually re-
quired. A direct summation procedure can be used just as reasonably
with potential computer cost savings.
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CHAPTER 4

NETWORK ANALYSIS

4.1 INTRODUCTION

4.1.1 Network Concepts.

Before one can discuss the role of network analysis in risk
analysis and decision risk analysis, some basic concepts must be
introduced. These concepts are a graph, a node, an arc, a network and a
path.

The first concept, a graph, is best described by an example.
Figure 4.1 is an example of a graph. The circles represent nodes, and
the lines joining the nodes are called arcs. Hence a graph is a
collection of two or more nodes joined by arcs. Any arc can be charcter-
ized by the pair of nodes that it connects. For exmaple, (1,2) character-
izes the arc connecting nodes 1 and 2 in Figure 4.1.

The only difference between a graph and a network is that the
arcs in a network have some type of flow in them (See Figure 4.2). One
example of a system that can be represented by a network is a development
test program. The nodes* in a development test program represent the
initiation or completion of various tests, the arcs** represent the actual
tesZs being conducted and the flow in the arcs is time and/or cost
involved in testing.

Finally, a path is defined as a sequence of arcs connezting two
nodes. For example, the following sequence of arcs form paths between
nodes 1 and 4 in Figure 4.2:

PATH (M): (1,2), (2,4)
PATH (N): (1,3), (3,4)
PATH (0): (1,4)

4.1.2 Types of Network Representations.

Given the preceding concepts, it is now possible to describe
the different types of network representations and network analysis
techniques for analyzing these different types of network representations.
The differences in the networks result from assumptions made about the
events and the flows in the activities being modeled in tLe project. As

Nodes generally refer to events.

Arcs generally refer to activities or jobs.
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Figure 4.1 Example of a Graph.

Figure 4.2 Example of a Network.
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mentioned previously, for research and development programs the arcs
represent activities, the nodes represent events, and the flow in the
arcs usually represents time and/or cost.

Three types of network models will be discussed. It should be
pointed out that this discussion will be very general and only the major
attributes and assumptions about the networks being modeled will be
discussed.

The differences in the types of network representations are
most easily described by analyzing one example under the varying assump-
tions about the events and flows in the activities. Changing the oil in
a car is the example that will be used throughout this discussion. The
first type of possible network representation for describing the events
and activities involved in changing the oil in a car is illustrated in
Figure 4.3. It is not very realistic for a development program, but it
is presented for the sake of completeness.

EVENTS

A - CAR IS LEFT AT THE SERVICE STATION.

B - CAR IS ON THE LIFT.

C- OLD OIL IS DRAINED AND THE FILTER REMOVED.

D- NEW FILTER AND OIL IN THE CAR.

E- CAR OFF THE LIFT.

ACTIVITY TIMES

ARC

AB - 2 MINUTES

BC - 5 MINUTES

CD- 6 MINUTES

DE - 2 MINUTES

Figure 4.3. Changing the Oil in a Car.
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Looking at Figure 4.3, there are five milestone events in
changing the oil in a car. For this network representation, as well as
all others, it is assumed that the events must be completed in a partic-
itlar sequence in order to complete the project. Certainly, in this
example new oil couldn't be added before the old oil is drained. Also,
in any R&D project this is a realistic assumption because certain
components must be developed before work can be started on others. For
instance, if an aircraft is being developed, the type of engine must
be developed since different engines will result in different structural
requirements for the body. Further, it is assumed that all events must
be completed and the completion times are known with certainty (i.e.,
the events and completion times are assumed to be deterministic).

For R&D programs, these two assumptions are not thought to
be very realistic. For rarely are the events and/or activity times
known with certai.nty. For example, there may be several designs under
consideration. One may represent an advance in the state of the art
while the other may be well within the state of the art. Possibly the
more advanced design would be initiated, and the other would be used as
a back up position (i.e., in case the primary development was not
successful). Based on this example, it is not too difficult to see that
the assumption of deterministic events is not very realistic for an R&D
project. Similarly, the time may not be known with certainty. Continu-
ing with the same illustration, it may be possible to develop a more
advanced design, but how long it will take is uncertain.

Although this kind of network representation is not realistic
for R&D projects, it is realistic in the construction industry where
tasks for a project are known ith certainty. Further, these tasks are
repetitive so the assumption ' deterministic activity times is also
realistic. The Critical Path Method is the name given the network
analysis technique developed by DuPont in 1958 to find an efficient
method for planning and scheduling the construction of a new facility.

There is a different network representation if, in this
hypothetical project, the assumption of deterministic activity times is
replaced by the assumption of probabilistic activity times. Probabilis-
tic activity times means that the activity times are not known with
certainty (i.e., there exists some distribution of activity times). For

4 instance, the activity time for BC in the oil changing example could
vary due to the service station attendant having to pump gas for cars as
they arrive at the station. If the attendant is uninterrupted, it may
only take 5 minutes to drain the oil and remove the filter. However,
this is unlikely since the gasoline station is on the main road, and
there is a continual stream of cars stopping for gas. Based on the
amount of business this station does, it is possible to estimate the
distribution of time to drain the oil and remove the filter as a function
of the distribution of iaterruptions. For instance, the m'.st likely
time for completing this activity might be 10 minutes, and the best and
worst times might be S and 20 minutes respectively. So if this activity
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time is assumed to be distributed as a triangular distribution with the
minimum, most likely and maximum activity times being 5, 10, and 20
minutes respectively, then Figure 4.4 represents the distribution of
this activity time. The network analysis technique developed to analyze
this type of network representation is Program Evaluation and Review
Technique (PERT) PERT was devel-,ped in 1958 for planning and control-
ling the development of the Polaris missile. Even though PERT is more
realistic then CPM, it still is deficient for modeling R&D projects
since the events are assumed to be deterministic.

Therefore, for modeling R&D programs it is thought that a more
realistic network representation would be one that would allow both the
events and activity times to be modeled probabilistically. Continuing
with the hypothetical example, it may not be possible to replace the oil
filter because the type of filter required may not be in stock. In this
example, the network would be represented by Figure 4.5. Once the oil is
drained from the car, the attendant checks to see if he has the filter in
stock. There is a 0.98 probability that he will have it in stock, and a
0.02 probability that the filter is not in stock. In addition, each of
the activity times could be modeled probabilistically, but this will not
be discussed here since this has already been illustrated for PERT.

There are currently in use or available within the AMC
community a number of similar network analyzer programs. All of these
can be used to analyze this type of network representation. They are
listed here in chronological order of their development:

a. Graphical Evaluation and Review Technique (GERT) developed
by Pritsker,

b. Mathematical Network Analyzer (4ATHNET) developed byMATHEMATICA,

c. Risk Information System and Cost Analysis (RISCA), a
modified version of MATHNET, developed by the Army Logistics Management
Center at Fort Lee, Virginia,

d. Statistical Network Analyzer (STATNET), a modified version
of MATHNET, developed by Gerald Moeller at the Army Management Engineer-
ing Training Agency (AMETA), Rock Island, Illinois, and

e. Venture Evaluation and Review Technique (VERT), a
modified version of STATNET, developed by Gerald Moeller of AMETA.

4.1.3 Topics to be Covered.

Obviously, an exhaustive examination of network analyzer
techniques is beyond the scope of this compendium. However, two
network analyzer techniques, PERT and RISCA, will be discussed in
detail in the next two sections.

93



//

U
z

LU
Ur.

0 5 10 15 20

TIME (MINUTES)

Figure 4.4 Distribution of Activity Time BC'.

EVENTS

A - CAR IS LEFT AT THE SERVICE STATION.

B - CAR IS ON THE LIFT.

C - OIL IS DRAINED.
D - FILTER IS REMOVED.

E - NEW FILTER IS IN THE CAR.

F' AND F - NEW OIL IS IN THE CAR.

G' AND G - CAR OFF THE LIFT.

H - FILTER IS NOT REMOVED BECAUSE IT CANNOT BE REPLACED.

Figure 4.5 Changing the Oil in a Car.

(Probabilistic Network)
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Recalling the three types of networks, the reason for examining
only these two network &aiayzer techniques is obvious. Since the first
network type does not 3ermit one to model either event or activity time
and/or cost probabilistically, there is no need to consider the Critical
Path method. On the other hand, PERT and RISCA are representative of
techniques that can be used to analyze network representations type 2 and
3 respectively.

For both techniques, the following information will be provided:

& Background

* How the technique works

* Wat type of problems it can handle (emphasis on risk
analysis applications)

* Description of output measures

* Benefits and shortcomings

o Example

In addition, there will be a summary and conclusions section
that will attempt to examine the role of the type of network analysis
provided by PERT and RISCA in risk analysis and decision making within
the materiel acquisition process.

4.2 PERT

4.2.1 Background.

The Progr .... Evaluation and Review Technique (PERT) was
developed in 1958 for planning and controlling the Polaris Fleet Ballistic
Missile Program. It is primarily an R&D management technique used to plan,
schedule, and control projects. Because of the success of PERT in the
Polaris program, the technique has been applied to other military and
commercial projects.

4.2.2 General Discussion.

Before the role of PERT in risk analysis can be defined, the
technique will be described as a management technique. The first and
probably the most important part of applying any network analysis tech-
nique is constructing the network. Network construction consists of
graphically describing the sequence of events and activities in the pro-
gram of interest in node and arc symbols (See Figure 4.6). The reasons
that the construction of the network is important are:
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a. The results of the analysis are only as valuable as the
network representation is realistic.

b. Frequently, this activity forces one to think about event
and activity relationships at a level of detail that might not otherwise
be done, and as a consequence, a lot of valuable insight may be gained.
So in a sense, using PERT can help both structure and discipline the R&D
management process.

Xb 7
11b '? z.91

(

Figure 4.6. Network Representation.

The best way to describe PERT is with a simple example.
Looking at Figure 4.6 there are seven events in this hypothetical example..
Tho estimates of the expected activity completion times and .he variance
of these activity completion times are hirted on the appropriate arcs.
For example, t 1 3 is the expected completion time for activity (13), and

a132 is the variance of the activity time of the same activity. These
estimates are generally based on subjective estimates of experts and are :
another crucial element in constructing the network, because th, fineli

results will only be as valuable as the estimates are realistic.

At this point, a brief digression is in order to describe the
most popular method of obtaining these activity time estimates. What is
generally done is: ,
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a. The activity times are assumed to be distributed as a beta
distribution (See Figure 4.7.)

b. Individual experts are then interviewed to determine an
optimistic (a), pessimistic (b), and most likely (ML) completion time for
each activity time.

c. These values are then used to approximate the mean and
variance of a beta distribution using the following estimates

Me- =a + 4ML + b
6

Variance =b 6

A great deal of effort could be expended at this point in
discussing the pros and cons of both the selection of the beta distribu-
tion and approximations. However, let's just indicate that there is at
least one alternative to both the assumption of the beta distribution
and the particular estimates. The alternative to the beta is the tri-
angular distribution. The triangular distribution possesses the same
desirable distributional proprieties* as the bota distribution; but,
unlike the beta distribution, given the optimistic, pessimistic and
most likely values a unique triangular distribution is defined. The
estimates of the mean and variance of the triangular distribution are:

Mean a + ML + b
3

1 2Variance T [(b-a) + (ML-a)((ML-b)]

v a Next, given the network and the estimates of the mean and
variance of activity times, the critical path through the network is
determined. The critical path is the path of the earliest project
completion time (i.e., the longest path). This path is important because
any delays in any of the activities on this path will delay the entire
project by the same amount of time. So any manager interested in com-
pleting the project by a prescribed date should be monitoring the
activities on the critical path carefully.

Of course, determining the critical path is not a simple
matter for complex projects because enumeration of paths may not be
possible. However, there are methods, such as dynamic programming, for
handling these types of eiiumeration problems.

unimodal and can be skehed.
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One dynamic program algorithm for determining the critical path
is the forward pass method.

The nomenclature for subsequent critical path calculations will
be the following-

tij = expected time associated with the directed arc from node
it to node j.

f. = expected time for the longest path from node 1 to node i,
1

i.e., the earliest completion time for event i (also
called the "label" of node i).

gi = the number of the node from which node i was labeled,(i.e., the number of the predecessor to node i on the

longest path) for each i = 1,...,N, where N is the
terminal node (project completion). The following
relations are valid for any PERT network,

fl = 0

f. = max (ti. + f) j = 2,...

In the example described by the network in Figure 4.6, the values of f.
and gi are:

f 091l= 0 g1 = ""

f2 = 12+f, = 8+0 = 8 g2 = 1

f3 :t 13+fl = 6+0 = 6 g3 = 3

f4 :t 34+f3 = 7+6 = 13 g4 = 3

f5 =t 35+f3 = 7+6 = 13 g5 = 3

f6 t 26+f2 = 14+8 = 22 g6 = 2

f7 = max (t 5 7+fs,t 4 7+f4 ,t 6 7+f6 ) g7 = 5.

= max (32,29,31) = 32

So the earliest project completion time is 32 months and the longest
path is constructed from the gis as follows:

1ALMC, A Course of Instruction in Risk Analysis, ALM-3315-H, United
States Army Logistics Management Center, ForitLee, Virginia, p V-43.
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a. the last arc on the path is (j,N) where gN= j

b. the next to the last arc is (k,j) where gj = k.

c. this construction continues until some gs = 1, then the

first arc is (l,s).

The critical path is then (l,s),...,(k,j)(j,N).

Next, PERT analysis provides a method for determining the
latest allcwable date for completing an event and still keeping the
project on schedule. This computation is relative to the time required
to complete the project.

"Let hi be the symbol for the latest allowable completion time

for event i. By definition, hi is the latest time by which an event must

be completed to keep the project on schedule. Let TR represent the

required project completion date. The required project completion date
might be less than, greater than or equal to the earliest project
completion time.

"The values of h. are computed from each event by working
1

backward from the last event and computing values of h according to the
following relationships:

hN = TR

h. = Min (hj-t ij) j = N,...,l

where N again represents the number of the terminal node or final event.
These formulas can be expressed in words as follows:

a. The latest allowable completion date for the project hN)
is identical to the required project completion time, TR.

b. To compute the value h. for an event i, subtract the

expected value of time for activity (i,j) from the value of latest
allowable completion time, hi, for the successor event, j.

c. If more than one value of h. is obtained, the smallest
value is selected." (Reference 1). 1

Ibid, ppV-43, V-44.
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For the example in Figure 4.6, assuming the project begins at
time zero and the time required for project completion is the expected
completion time of the critical path (32), the latest allowable completion
dates are:

S7 = 32

h = h7-t =32-9 = 236 7 67

h5 = h7 -t 5 7 = 32-19 = 13

h4 = h 7-t 7 = 32-16 = 16

h 3 = Min (h4 -t 34 ,h 5 -t 35) = Min (9,6) = 6

h2 = h6 -t 2 6 = 23-14 = 9

h = Min (h3 -t 13 ,h 2-t 12) = Min (0,1) = 0

In this example, h6 indicates that event 6 must be completed 23 months

after the project begins in order to complete the project in 32 months.

Finally, using "the values of the earliest completion time for
event i, fi, and latest allowable completion time, hi, it is possible to

calculate the slack of an event i. The slack of event i is denoted by
S. and is given by:

S. = h. - f."1,
i 1 1

Slack indicates whether there is more than enough time to complete tf.e
project by a required date (positive slack), whether there is adequate
time to complete the project by a required date (zero slack), or whether
there is not enough time to complete project by a required date (negative
slack). Continuing with the same example in Figure 4.6 the slack for the
events is:

S= 0 S5 = 0

S 2=1 S6 =1

s3 0 S7 =0.

5 =34

1• ILoc Cit., p V-16.
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cpt The way things are currently scheduled, the second event's
completion date could slip a month and still not delay the project
completion. Note that the slack of all of the evcrts on the critical
path is zero. However, this is only true when the required project
completion time is equal to the critical path completion time.

Therefore, PERT, as it was originally designed, provides
management with information that should enable them to devote the
majority of their energies to managing the activities that are most
crucial to the timely completion of the project or for scheduling pro-
jects for completion by a prescribed date.

In addition, the PERT critical path information is sometimes
used to estimate the probability of meeting required completion dates.
This is done by making the assumption that the probability of the project
being completed by some required date will be approximately equal to the
probability that the critical path will be completed by the required date.
It is also assumed that the activities and activity times on the critical
path are independent. If the number of activi'ties is large, the
distribution of the completion times for the c•.-tical paths .ill be
approximately normally distributed with mean equal to the sum of the
means of activity times on the critical path and the variance equal to
the sum of the variances of activity times on the critical path. In this
example,* the distribution of completion times would be normal with mean
equal to 32 months and standard deviation equal to 5 months. Using this
information, the probability of completing the project within 35 aronths
would be 0.72, i.e.,

P(X < 35] = P[Z < 35 3 PZ < 0.6] 0.72

4.2.3 Possible Problems.

Up to this point, the discussion has been for the most part
positive, but there are several potential problems. The first potential
problem is that PERT network representations may not be adequate for
describing events. Recall that in all PERT evaluations the events are
assumed to be deterministic. This may not be a bad assumption for short
range planning in a development program, but certainly for long range
planning there is a strong possibility that the events are uncertain.
For example, in the development of a truck, a diesel engine might be
pref-'rred. However, development of a diesel engine might represent an
advance in the state of the art, and the chances of successful development
might be 50/70. The developing agency may plan to initiate the develop-
ment of the diesel engine, and if it is unsuccessful then an existing
gasoline eriginw. will be modified for the truck.

In a practical situation, three activities would not be large enough.
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Clearly, the events in this development are uncertain, but PERT
would not allow one to analyze such a situation. It is not meant to
imply that PERT is not useful for planning and controlling R&D projects,
but only to caution the analyst to PERT's limitations. There is nothing
wrong with using PERT to analyze a network where the events are
deterministic or can be assumed to be deterministic without any great
consequences. However, if the assumption cannot be made, the results may
be misleading. The responsibility rests with the analyst to determine
if the events can be assumed to be deterministic.

Next, the greatest potential problem in using PERT is that the
usual method for determining the critical path may not include critical
activities. Recall that PERT uses a dynamic program algorithm to
determine the critical path. If Pi. i=l,...,N represents the completion

time of the N possible paths, the forward pass method selects the maximum
Pi' (i.e., Critical Path = Max [Pi] i = l,...,N). This method is fine if

the activity times are deterministic, but they aren't. What is desired
is the expected value of the maximum path, (i.e., E[Max (Pi)0).

Unfortunately, it is not practical to derive this analytically except in
extremely simple cases.

Faced with this problem, there are two possible solutions. One
is to make some simplifying assumptions that allow one to obtain an
approximate answer, and the other is to use simulation methods. In most
applications, the following simplifying assumption is made; "the largest
total elapsed time for the project always occurs on the path with the
largest expected total elapsed time." (Reference 1).

Using this assumption, the maximum expected value of the paths
is determined, i.e., Max [E(Pi)]. In general, however, E[Max(P0)] #
MAX [E(Pi)] i = 1,...,N. As a result, PERT estimates of the expected value

of project completion times are always low. There is always the chance
that another path's.project completion time could exceed the expected
project completion times. Consider for example path (1,3)(3,4)(4,7).
The probability of the completion time for this path exceeding 32 months
is*

P[X > 32] = 1 - P[X < 32] = 1- P[Z < 32 -29]7 1
= 1 - P[Z < 0.429] = 1 - 0.66 = 0.34

Assuming the path completion times are normally distributed.

Loc. Cit., p V-39.

103



In this exampl', the activities on the path may be just as critical as
the activities on the critical path. Therefore, the potential problem
lies in that all critical activities may not be identified with this
method. The net result might be a program delay that results from delays
in unidentified critical activities.

What can be done? For one things being aware of this potential
problem should at least caution the manager not to ignore other activities.
In addition, simulation offers a reasonable solutipn to the problem. The
procedure for determining the critical path would!/then be:

/

a. Randomly sample from each activity time distribution,

b. Using these values, use the forward pass method to
determine the critical path,

c. Record both the completion time for the critical path and

the activities which compose the critical path, and

d. Repeat the above steps n times.

In this case the n completion times would serve as the distribution of
minimum project completion time, and the activities on the n paths could
be placed in histogram form to display the frequency of occurrence of
each activity on the critical path.

Of course this is not the solution to all problems either.
It may be both difficult and expensive to implement such a simulation
for large networks. In addition, the traditional PERT estimates of the
beta distribution can not be used in the simulation without first making
some assumptions because a unique beta distribution was not defined.

While the preceding potential problej, should not discourage
any potential user, they should serve as a reasonable set of criterion
for interpreting results for planning, scheduling and controlling
programs.

4.2.4 Risk Analysis Applications.

So far, no mention of the role of PERT in risk analysis has
been made. It should be emph- ized that risk analysis should be an
integral part of program management. PERT was developed to help R&D
program managers cope with uncertainty in planning, scheduling, and
controlling activities in their program. However, the emphasis in
management is on identifying the greatest potential schedule risks.
Identification of risks should reduce the uncertainty in planning and
scheduling actiiities, and the manager should be able to more effec-
tively control the program by closely monitoring critical activities.
In addition, the risk of not meeting program schedule deadlines can be
estimated also. Therefore, PERT is thought to be most applicable as a
tool for program managers. Of course, all the preceding comments only
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apply to situations where PERT can reasonably be applied. It is the
responsibility of both the analyst and the manager to make surer that the
assumptions made in PERT do not misrepresent reality to the e;?tent that
the results of the analysis are suspect.

4.3 RISCA

4.3.1 Background.

RISCA is a modified version of another network analyzer pro-
gram, MATHNET (Reference 2). It was modified by the Army Logistics
Management Center (ALMC) at Fort Lee, Virginia. Under PROMAP 70, the
responsibility for instruction in Risk Analysis was assigned to ALMC.
In order to expedite the program, a contract was let tc, MATHEMATICA by
the Army Research Office to develop a course of instruction in Risk
Analysis. MATHNET was developed as a teaching aid for this course.
The materials were then used by ALMC as the foundation for the current
course of instruction in risk analysis. ALMC not only has expanded on
the course content, but they have also modified MATHNET and called
their version of the program RISCA. For a detailed discussion and
comparison of MATHNET and RISCA, see Reference 3.

4.3.2 General Description.

RISCA is a computer program that allows one to analyze
systems that can be represented by a general class of networks. Since
the events and activity times and/or costs can be modeled probabilis-
tically, the analysis is accomplished by simulation. The output con-
sists of a frequency distribution for all possible terminal events and
the corresponding time and/or cost distribution for each terminal event.
In addition, the distribution of time and/or cost weighted over all
possible terminal events is estimated.

Before one can an-.lyze a system with RISCA, the system must
be represented by a network. As mentioned previously, many of the
benefits derived from analy sing a network result from th~e analysis and
thinking that goes into tht construction of the network. Consider, for
example, the development of a tank where there are several alternate
designs. Describing the sequence of events for alternate development
piograms for each design should provide valuable insight into the
types of problems that one is likely to encounter in each program.

2Mathematica; MATHNET, Preliminary Edition, August 1970, Princeton,
New Jersey.

3Brooks, W., Foster, W., and Maruyama, R.; MATHNET and RISCA (Network
Analyzer Program) A Users Manual, to be published as an AMSAA Technical
Report, 1972, Aberdeen Proving Ground, Maryland.
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In order to better explain how RISCA works, the simulation

of the oil changing example (Figure 4.5) from the introduction is
described.

Since the event "removing the oil filter" is the only
uncertain event, the probabilistic event network can be described in
in terms of two deterministic event sub-networks. One sub-network
represents the events and activities involved in changing the oil and
the oil filter, and the other represents the events and activities
involved in changing only the oil. In this simple example there is only
one path in each deterministic event sub-network, but in more realistic
problems there will almost certainly be several possible paths in a
sub-network.

Monte Carlo procedures are used to construct a deterministic
event sub-network from the probabilistic event network. Each of the
sub-networks have a terminal event whose completion time is determiped
by sampling all the activity completion time distributions in the
sub-network using Monte Carlo procedures. All the potential paths in
the sub-network are then investigated using these sample activity times.
The completion time for terminating the sub-network is the path with the
longest completion time. In the oil changing example, if the sub-network
constructed was the one involving removal. of the oil filter, the
activity time distributions in this sub-network would be sampled. Since
only one path exists, these sample values would then be summed to esti-
mate the sub-network completion time.

It should be noted that determining the maximum time path is
not as straight forward as in PERT analysis because of the network logic
permitted in RISCA. This network logic and the perturbations in the
maximization procedure it causes will not be discussed here. The
interested reader is again referred to Reference 3.

In addition, the cost of all activities in the sub-network
would be sampled and summed to estimate completion costs. However, in
this example, costs were not considered.

The preceding procedure is repeated many times and the sample
distributions of Yerminal events and time and/or cost are constructed.
It should be pointed out that RISCA does not determine a deterministic
event sub-network first, but the procedure was so described for the
sake of clarity. Actually, the deterministic event sub-network is
constructed and the corresponding time and cost estimates are accumulated
as the network. is analyzed sequentially.

3 1bid.
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For this example, assume 300 iterations have been run.
RISCA's output would consist of frequency histograms of the percentage
of times each terminal event was selected as shown in Figure 4.8 and
the completion time distributions shown in Figures 4.9, 4.10, and 4.11.
In addition, a cumulative distribution of time for each completion time
distribution in Figures 4.9, 4.10, and 4.11 would be provided. Further
discussion and interpretation of the output is deferred until the
example output is described.

It should be pointed out that costs are not considered ii:
this exai~rle (i.e., the cost of oil and a filter is known with certainty).
However if costs were uncertain, there would also be distributions of
cost for all terminal events.

In m:ost real world problems, costs are uncertain. For the
analyst modeling the network, there are two options available for
estimating the activity costs with RISCk: (1) the cost can be estimated
independent of time by running a separate siculation or (2) the cost can
be estimated as a linear function of tine in the sane sial~itir, fi.e.,
Cost = (fixed cost) + (variablk cost x time)].

in the next few pages the applications and benefits :tc 1e

derived from doing this type of analysis vill be discussed.

4.3.3 Risk Analysis and Decision Risk Analysis Applications.

RISCA provides a framework for modeling uncertain ev'ents,I< activity times, and activity costs in a development program and simula-
ting the corresponding network representations. In the context of risk
analysis, RISCA provides a method for quantifying development program
time and cost risks in a meaningful, summarized form. For example,
consider a taný being developed to replace an existing system by 1980.
What are the chainces of being fully deployed by 1980, or what is the
risk of not being fully deployed by 1980? Given a network representa-
tion that realistically lays out the sequence of events and activities
leading up to full deployment and estimates of the uncertainty in the
activity completion times and events, a network analyzer program, like
RISCA, could be used to estimate the chances of meeting or not meeting
this deployment date.

Several comments should be ma(.e at this point. First of
all, the estimate of risk is only as good as the analysis that went
into modeling the network. If a marginal effort is devoted to struc-
turing the network, the results may not be worthwhile, or they may be
misleading. In addition to the obvious reason for ca-efully struc.-
turing the network, there is another more subtle reason that this
modeling effort should be emphasized. Sturcturing a network will
probably force the user to thinh about the interaction and consequences
of events at a level of detail that he would probably not do otherwise.
Frequently, such a probing examination gives the user additional insight
and perspective into potential problems.
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Next, the risks will change over time. This results from the
fact that as time passes more information is gained. Two things can
happen. One is that the outcome of previously uncertain events may now
be known or the events leading up to the uncertain events may indicate
that the event is more or less uncertain than it was previously thought
to be. The other is that there exists unknown uncertainty, and as time
passes the unknown uncertainties may surface. For instance, a problem
may be surfaced during test and evaluation that could not be predicted
during design. In this case, there must be a continuing or periodic
update of the network representation in order for the risk estimates to
be valid.

In addition, network analysis can be a valuable tool ;n a
decision risk analysis. Network analysis can provide the foundckion of
the structure for an evaluation for decision-making purposes. '",
example, crii decision might be to choose between alt,'rnative systems
for meetino a particular set of requirements. For this type of problem,
a network co-uld be structured for each alternative. Each of the networks
could then be simulated, and the chances of successfully developing
each alternative system and the corresponding development costs and
completion timp could be estimated. Given this information, the
analyst has several ;elative measures for comparing the alternatives.
In addition to the estimates of time and cost, the analyst has the infor-
mation in a form that will allow him to make relative time and cost
risk statements for each alternative, if there exist time and cost
constraints. Of course, there is more to doing a decision risk analysis
than network analysis, but this type of analysis can be a valuable asset.

In the next section, a hypothetical problem will be described,
structured as a network, and simulated using RISCA. The output will
then be used to make risk statements and a decision. The emphasis in
this example will be on structuring the problem as a network. The only
piece of information not given is how to input this network representa-
tion into the program. The interested reader is again referred to
Reference 3.

4.3.4 Example Problem.

During the past few years a certain worker has noted that
occasion;-ly he has been late for work. However, because of his
industriousness, the worker has never feared reprimand. Never, that is,
until the management adopted a new tardiness policy. The policy
dictates that the number of minutes each employee is late during the
succeeding 100 weeks (500 working days) will be cum'ilated and deducted
from the final pay check if the employee is late moe than 10 percent
of the time.

3 Loc. Cit.
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Although the worker knows that he has been late for work, he
does not know if he has been late over 10 percent of the time. Because
this policy could potentially cost the worker quite a bit of money, he
has decided to carefully evaluate his routes to work and determine the
chances (risk) of his being affected by this new policy.

Figure 4.12 provides a graphic illustration of the workers's
route to work. The following is a description of the potential hazards,
Hdelays, and decision points.

a. A Fork in the Road. Not far from the workers's house is
a fork in the road. Both roads ultimately lead to work. One, however,
is considered an alternate route because of its greater length. On
occasion, this longer route must be taken because of intermitten
construction along the primary route.

b. Fuel Problems. The worker is assured of not havIng to
to stop for gas if the primary route is taken. However, if the alter-
nate route must be taken, there is a chance that a S-minute fuel stop
must be made,

c. Bumpy Road. Beyond the gas station is a stretch of
extremely rough road. The worker has, on occasion, been forced to make
a time consuming stop to change a flat tire along this segment of the
route.

d. Rider Stop. The next milestone along the route is the
house of a fellow worker. The man in our example must stop here every
day to give him a ride. Most of the time, the rider is waiting outside
and no appreciable time is consumed in the pick-up. However, if the
rider is not waiting, our worker must make a five minute stop to check.
The probability that the ridjr is not waiting outside is a function of
the delays along the route.

Using standard network notation (i.e., arcs representing
activities and nodes representing events or decision points) the route
to work can be represented as illustrated in Figure 4.13. In Figure
4.13, the general flow of network is from left to right. The nodes
which involve chance (fork in the road, stop for gas, bumpy road, and
check rider) are characterized by an arc entering from the left and two
arcs exiting. The arc which is chosen to exit these chance nodes is
determined probabilistically.

The remaining nodes identify other significant events in
the network and mark the beginning and end of segments along the rc.te.
The arcs connecting all nodes contain distribution and time data
inherent in the system. These arcs are also equipped to handle Co:4
data which is not considered in this example.
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Now that the worker has identified the route and its
characteristics, he must assign probabilities to those nodes involving
chance and time values to the arcs involving time. No costs are
directly involved in the driving to work aspect of the problem.

The worker's past experience wi elapsed time required to
drive the different segments of the road enables him to specify a most
likely, optimistic and pessimistic completion time for each arc. Three
time estimates are used for each arc in the network with the following
three exceptions: stopping for gas, fixing a flat tire, and stopping
to check for the rider.

All of these stops require about the same time. Therefore,
the time for completion is assumed to be constant. In Table 4.1, all
of the activity times are summarized.

TABLE 4.1 ACTIVITY COMPLETION TIMES

Triangularly Distributed Arc Times
Time Distribution Arguments (Minutes)

Arc
Opti- Identifi- Most Pessi-

Activity mistic cation Likely mistic
From Home to Fork in the Road 10.0 (1,2) 12.0 14.0

Fork in the road to gas
station (primary route) 5.0 (2,3) 6.0 7.0

Fork in the road to gas
,tation (alternate route) 11.0 (2,3) 13.0 15.0

Gas Station to Bumpy Road 3.0 (3,5) 4.0 5.0

Bumpy Road to Rider's House 4.0 (5,7) 5.0 6.0

Rider's House to Work 8.0 (7,9) 9.0 10.0

Constant Arc Times

Activity Arc Identification T'ime Required (Minutes)

Stop for gas (3,4) 5.0

Change flat tire (5,6) 15.0

Stop to check rider (7,8) 5.0

In addition, the worker's experience enables him to subjec-
tively estimate the probability of the events occurring for the chance
nodes. In Table 4.2, a summary of the chance nodes and the workers
estimate of the probability of occurrence is presented.
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TABLE 4.2 PROBABILITY NODES

Event Probability of Occurrence

Traveling Primary Route upon Reaching
Fork .90

Traveling Alternate Route upon Reaching
Fork .10

Stopping for gas if Alternate Route
Taken .20

Having a Flat Tire Along Bumpy Road .05

Stopping for Rider if Alternate
Route Taken .20

Stopping for Rider if Gas Stop is
Made .40

Stopping for Rider After Flat Tire .60

At this point, the worker has all the information required
to run a network analysis of his route to work using the RISCA program.
Since our objective is only to indicate how the output of this program
could be usod in a risk analysis or as a tool for '"e..ision-making pur-
poscs, there will not be a detailed description of the computer output.
Only the relevant output will be presented. Once again, the interested
reader is referred to Reference 3 for details.

Since in this example the worker is not interested in the

path to work, only the distribution of arrival times, weighted over all
possible outcomes, will be examined. Figure 4.14 presents the cumulative
frequency histogram of this arrival time. The vertical axis is time
to completion, and the horizontal axis is the probability that the true
time is less than or equal to the time on the vertical axis. For
instance, the probability of arriving at work in less than 35 minutes
is approximately 0.45.

Assuming the worker always leaves his house at 0705 every
morning and work starts at 0745, the probability of his being late on
any given day is approximately 0.15. This is obtained as follows:

a. The worker always leaves his house at 0705. The probabil-
ity of his being late is the probability that it will take over 40 minutes
to get to work.

3Loc. Cit.
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b. Figure 4.14 gives cumulative probabilities like the
probability of arriving at work in less than or equal to 40 minutes.

c. The probability that the worker is late is one minus the
probability obtained in b.

If the probability of being late on any given day that the worker departs
at 0705 is 0.15 then the risk of being late over 10 percent of the next
500 working days is the probability of being late 51 or more times. Let
t be the random variable representing the number of times late and p the
probability of being late on a given day, then

Soo
500 50 9 00-k.

P[51 <•z5001= < so ) p('l-p)S

is the risk of being late over 10 percent of the time. If the worker
leaves at 0705, the above calculation results in a risk of 0.99.

Using this method it is possible to derive a risk profile
for the worker as a function of departure time (See Figure 4.15). What
should the worker do? The answer is not clear cut. It depends upon
the worker's assessment of the value of additional leisure time versus
the potential financial impact of being docked. However, given this
risk profile the worker is in a position to consider the trade-offs
rationally. For example, if the worker cannot possibly afford to be
docked then the worker can select a departure time from the risk
profile where the risk is approximately zero (i.e., leave 0653 or
earlier).

Thus, this type of network analysis can be used to estimate
risk and may be a valuable tool for making decisions.

4.4 SUMMARY

PERT provides a management tool that can help structure and
discipline the R&D management process. In particular, PERT provides a
method for identifying potentially high ris1 situations, and hence it
can be a valuable tool for planning and scheculing uncertain program
activities to meet program schedule objectives. In addition, I1ERT can
provide guidance for the manager in control]*ng program activities by
focusing his attention on critical activities . However, many of the
assumptions that are generally made in apply:.ng PERT should be
considered carefully before the technique i! used.

Assuming that the events are detLarministic may be fairly
reasonable for short range planning and sch'3luling in a R&D program, but
this assumption may break down for long range planning and scheduling.
If the assumption does not apply, we may be removing a major element of
the uncertainty. Not only will the network representation be unrealistic,
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but analyzing such a network may be fruitless and using the results
may be dangerous. In addition, the assumption that the earliest
completion time always occurs on the critical path may be misleading.
The net effect of this assumption might be that a critical activity
was not identified and hence was not closely contrnlled. In this case,
the program could be delayed because of delays in this unidentified
activity.

These two assumptions represent the greatest potential
problems for PERT users and should be examined closely. However,
-imulation offers an alternative to making the second assumption and
VERT offers an alternative when both assumptions are in question. So
one should ncr feel stymied if these assumptions are suspect,

On the other hand, RISCA provides a framework for realis-
tically niodeling uncertainty in network representations and analyzing
time, cosT, and event uncertainty. In the context of risk analysis,
RISCA and the other programs mentioned provide a method of quantifying
(i.e., consolidation activities) program time and cost risks, and in
the context of decision risk analysis these programs can provide the
foundation of the structure for the evaluation for decision-making
purposes.

119 Next page is blank.
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CHAPTER 5

BAYESIAN STATISTICS

5.1 INTRODUCTION

"A Bayesian believes that any quantity whose value he does
not know is (to him) a random variable. He believes that it is possible,
at any time, to express his state of knowledge about such a random
variable in the form of a probability density function. As additional
experimental evidence becomes available, Bayes' Theorem is used to com-
bine this evidenca with the previous probability density function in order
to obtain a new posterior probability density function representing his
updated state of knowledge. The probability density function expressing
the analyst's state of knowledge serves as a quantitative basis for any
decisions he is required to make." (Reference 1).

To motivate the usefulness of the Bayesian philosophy, consider
the following hypothetical decision problem. Suppose that the US Army is
involved in the early stages of a development program for a major weapon
system. In the near future the decision must be made as to whether or
not the Army will commit a sizeable portion of resources for the produc-
tion buy of this system. This decision could involve millions of dollars
over the system's life. One factor having a significant impact in such
a decision is how well the system stacks up against a predetermined set
of performance specifications. In this situation, there are generally
two important questions facing the decision maker:

a. What are the chances that the system will meet the require-
ments specified? (i.e., What is the risk that the system will not meet
the requirements?)

b. If the chances of the system meeting the requirement are
small, what less stringent, requirement could be met with an acceptable
likelihood?

Unfortunately, testing of large systems is expensive both in
terms of time and money. Consequently, initial production decisions are
frequently made with very little production data. However, in most
development programs there always exists other information that should
be given consideration in these decisions. This may take the form of pre-
production test data, engineering judgment, and experience with similar
systems.
iDrake, Alvin W.; Bayesian Statistics for the Reliability .ngaineor,
Proceedings of the National Symposium on Reliability a;,d Quality Control,
IEEE, 1966, pp 315-320.
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In such instances, the Bayesian philosophy provides a rational
framework for consolidating all this information (prior beliefs and
current test data) into one simple concise statement concerning the
chances of the system realizing the specified requirement.

Before examining the details of the Bayesisn procedure,
consider the following iew paragraphs taken directly from an article by
F. J. Anscombe. They give a brief but concise historical development of
both the Bayesian and the more orthodox or classical statistical
philosophy.

"During the last few years there has been a re-
vival of interest among statistical theori5ts in a
mode of argument going back to the Reverend Thomas
Bayesl (1702-61), Presbyterian minister at Tunbridge
Wells in England, who wrote an 'Essay towards solving
a problem in the doctrine of chances,' which was
published in 1763 after his death. Bayes's work was
incorporated in a great development of probability
theory by Laplace and many others, which had general
currency right into the early years of this century.
Since then there has been an enormous development of
theoretical statistics, by R. A. Fisher, J. Neyman,
E. S. Pearson, A. Wald and many others, in which the
methods and concepts of inference used by Bayes and
Laplace have been rejected.

"The orthodox statistician, during the last
twenty-five years or so, has sought to handle
inference problems (problems of deciding what the
figures mean and what ought to be done about them)
with the utmost objectivity. He explains his
favorite concepts, significance level, confidence
coefficient, unbiased estimates, etc., in terms of
what he calls probability, but his notion of proba-
bility bears little resemblance to what the man in
the street means (rightly) by probability. He is
not concerned with probable truth or plausibility,
but he defines probability in terms of frequency of
occurrence in repeated trials, as in a game of
chance. He views his inference problems as matters
of routine, and tries to devise procedures that will
work well in the long run. Elements of personal
judgment are as far as possible to be excluded from
statistical calculations. Admittedly, a statistician
has to be able to exercise judgment, but he should
be discreet about it and at all costs keep it out of
the theory. In fact, orthodox statisticians show a
great diversity in their practice, and in the explana-
tions they give for their practice; and so the above
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remarks, and some of the following ones, are no better
than crude generalizations. As such, they are, I
believe, defensible. [Perhaps it should be explicitly
said that Fisher., who contributed so much to the
development of the orthodox school, nevertheless holds
an unorthodox position not far removed from the
Bayesian; and that some other orthodox statisticians,
notably Wald, have made much use of formal Bayesian
methods, to which no probabilistic significance is
attached.]

"The revived interest in Bayesian inference starts
with another posthumous essay, on 'Truth and P:obability,'
by F. P. Ramsey 2 (1903-30), who conceived of a thecry of
consistent behavior by a person faced with uncertainty.
Extensive developments were made by B. de Finetti and
(from a rather different point of view) by H. Jefferys.
For mathematical statisticians the most thorough study
of such a theory is that of L. J. Savage 3 , 4 .
R. SchlaiferS has persuasively illustrated the new
approach by reference to a variety of business and
industrial problems. Anyone curious to obtain some
insight into the Bayesian method, without mathematical
hardship, cannot do better than browse in Schlaifer's
book.

"The Bayesian statistician attempts to show how the
evidence of observations should modify previously held
beliefs in the formation of rational opinions, and how
on the basis of such opinions and of value judgments a
rational choice can be made between alternative avail-
able actions. For him probab'lity really means proba-
bility. He is concerned with. judgments in the face of
uncertainty, and he tries to make the process of judg-
ment as explicit and orderly as possible.

IBayes, T., Essay Towards Solving a Problem in

the Doctrine of Chances, reprinted with
bibliographical note by G. A. Barnard,

2Biometrika, 45 (1958), 293-315,
Ramsey, F. P., The Foundations of Mathematics,

3London: Rowtledge and Kegan Paul, 1931.
Savage, L. J., The Foundations of Statistics,

4New Yor!ý, John Wiley, i954.
Savage, L. J., Subjective Probability and
Ltatistical Practice, to be published in a
5ethuen Monograph.
Schlaifer, R., Probability and Statistics for
Business Decisions: An Introduction to Managerial
Economics Under Uncertainty, New York, McGraw-Hill,
1959." (Reference 2).

2Anscombe, F. J., American Statistician, Vol 15, 1961, pp 21-24.
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Since Anscombe's article (Reference 2), Bayesian influence
in statistical theory and practice has become more and more prevalent.
Many works appear in the literature concerning the use of Bayesian
thinking primarily in the areas of business decision making and relia-
bility measurement. Of particular interest is a recent introductory
text on Bayesian statistics by Samuel Schmitt (Reference 3). This text,
written at a beginner's level, contains an excellent discussion of the
Bayesian point of view. It also contains an extensive bibliography
including a list of references by subject area along with an indication
of the degree of difficulty of the respective work. Schmitt's text is
highly recommended for an introduction to Bayesian analysis.

In the next section, a mathematical description of the
Bayesian updating procedure is presented. Its put)ose is to familiarize
the reader with the basic theory, terminology, and notation encountered
with the technique. This is followed by a detailed practical example
illustrating the mechanics involved in applying the theory of the updating
procedure. The example, concerning the development program of a missile
system, is particularly representative of the type problem encountered
in risk analysis within the US Army today. A section then follows which
contains a discussion of the significant advantages and disadvantages of
the Bayesian approach along with recoimiendations concerning its
Anplicability in risk analysis.

5.2 DESCRIPTION OF THE BAYESIAN UPDATING PROCEDURE

Consider the Bayesian analysis of p, an unknown parameter of a
postulated probabilistic model of a physical system. Assume~ hat the
experimental outcomes with the system can be treated as the values of
a random variable x, the characteristic of interest. Based on past
experience and all other available information, the Bayesian approach
begins with the specification of P prior probability density function
f P (p), that is a probability density function reflecting the analyst'sp
prior beliefs about the value of the parameter, p. The assumed model
specifies the probability density function for the sample value of the
characteristic x, given the value of the parameter, p. Since p is being
regarded as another random variable, the p.d.f. for the sample value of
x with parameter p is written as the conditional p.d.f.,

f (xo1 po) = conditional p.d.f. for the sample value ofSxlp0 characteristic x, given that the value of

parameter p is equal to po.l0
2 Ibid.

Schmitt, Samuel A.; Measuring Uncertainty- An Introduction to Bayesian

Statistics, Addison Wesley Publishing Co., Inc., Reading Massachusetts,
1969.
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Each time an experimental value of characteristic x is obtained, the
continuous form of Bayes theorem* is used to obtain a posterior proba-bility density function fpix(Poix 0 ) representing the analyst's new

state of knowledge about the value of the parameter, p. This posterior
probability density function serves as the basis for any present decisions
and also as the prior distribution for any future experimentation with
the physical system.

As an example of the Bayesian updating procedure consider the
weapon system development program mentioned in the introduction. Suppose
that the system in question is a missile system and that production
missile reliability is the crucial unknown decision variable. Since
missile system test flight data are scored as successes and failures,
the unknown reliability can be thought of as the success proportion, p,
of a Bernoulli process. Thus, the conditional distribution of k
successes in n trials, given p, is binomial and its probability density
function can be expressed as

f ( p n! p k 1.p)n-k
fki p p! (n-k) T-

where k = O,1,...,n.

Further, suppose that the Sayesian analyst feels that he can
quantitatively specify all his prior beliefs about the missile
reliability (p) in the form of a prior probability density function.
In this case, his prior knowledge may be based on pre-production flight
test data and/or expert engineering judgment and/or past experience with
similar systems, etc.

For problems where a Bernoulli success proportion is the crucial
decision variable, several arguments can be made in defense of using a
a beta distributional representation for the prior. First, the beta is
of a form which lends itself quite readily to the distribution of a
proportion. Its range is the unit interval, it is unimodal and can be
skewed in either direction. Thus by judicious choice of parameters, the
beta probability density can easily be put into a form which will
satisfactorily reflect one's prior beliefs. The beta prior assumption
has the additional advantage that it simplifies the mathematics
involved in the update procedure. Any last minute test results can
readily be used to update the posterior beta distribution by merely
repeating the update procedure with the posterior beta distribution now

£fxp (X Po) fxip (XoIPo) fp (Po)
*P 0 f p0Ix°) = f f x 1p(Xo 1po) f p(Po ) dpo

PO
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Pssuming the role of the prior beta distirbution. Further, each update
of the distribution reduces the impact of the subjectivity inherent in
the initial prior assumption.

If p is assumed to have a beta distribution (one of the most
widely used priors for this class of problems) with parameters Z and m-f,
the probability density of p is given by

f p(p) = C(9,m) p Z-l(l-p)m-k'l

for 0 < p < 1 and where C(Z,m)* is the normalizing constant.

Using Bayes theorem to update this prior distribution of p with
the experilwental results (i.e., k successes in n trials), it follows
that

n!___ pkPn-k 9.') -i 1P m-Z-l

fpk(P1k) 1k!(n-k)! pk(-)n C(9,m) p (l-p)m
f kn-I pn k-p) n-k C(l,m) p Z1(l-p)m-Z-1 dp

After the necessary integration and algebraic manipulation the above
equation reduces to:

f pl(Pk) = C(k+",, n+m) p k+z-l (I-p)n-k+m-Z-l

which is again a beta distribution with parameters k+Z and (n+m)
(k+9.).

This posterior probability density function which represents
the analyst's state of knowledge now serves as a quantitative basis for
any decisions he is required to make.

In certain instances, the analyst may want to base his initial
prior probability density function on pre-production test flights (where
the pararleters k and m represent the number of successes and the number
trials respectively) and then weight this prior distribution by applying
a weighting factor to reflect other information such as engineering
judgment and/or previous experience with similar systems, etc. This can
be accomplished by simply applying the weighting factor, w, to the

C(.m) r(m) where r(m) = (m-l)! for positive integers m.P(k) r(m-E)
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parameters k and m which results in a prior of the form

f (p) = Cwz, wm) p Wk'~-p1 (m-k)-I
wZ- 1()wm)l

p

for 0 < p < 1. The updating procedure is then applied to this weighted
prior distribution as in the unweighted case.

In a recent report by Atzinger and Brooks (Reference 4), the
authors discuss a systematic approach for analyzing one's state of
knowledge, taking into account certain basic considerations for construct-
ing a prior distribution using the weighting factor approach. This report
specifically addresses the class of problems characterized by success-
failure type data. The interested reader is referred to that report for
a detailed description of the method. For the purposes of this discussion,
however, it will Le assumed that an appropriate prior weighting factor
has been determined.

Before proceeding, one further point should be mentioned.
Although the emphasis in this discussion has been placed on the applica-
tion of the Bayesian procedure to success-failure type data (Bernoulli
process), the updating technique is certainly not restricted to this
class.

In the next section, a more detailed version of the previously
considered missile system example is examined to illustrate the details
of the update procedure and to indicate how the decision maker can use
information provided by the posterior beta distribution.

5.3 EXAMPLE

Assume the US Army is developing a surface-to-air missile to
provide forward air defense for the Field Army. The tactical production
decision is to be made in about a year, and to date there have been test
firings with Research and Development rounds (40 firings) and Industrial
Prototype rounds (30 firings). In the near future the Initial Production
Tests will begin and it is anticipated that by the decision date there
will be 20 test firings with production missiles. One important considera-
--4ior facing the decision maker is the chance that the system will not
meet the production missile reliability (RM) requirement. Unfortunately,

there will be only a limited amount of production test flight data
available by the decision date, and if only production missile test data

4 Atzinger, E. M., and Brooks, W. J.; Comparison of Bayesian and Classical
Analysis for a Class of Decision Problems, Technical Report No. 59,
April 1972, U.S. Army Materiel Systems Analysis Agency, Aberdeen Proving
Ground, Maryland.
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is used to estimate R,, then a great deal of information is being

ignored. Therefore, the problem is how can the pre-production missile
data bh meaningfully combined with the production data for decision-
making purposes. To further compound the problem, the contractor is
claiming that the quality control program at the manufacturing plant
has been improved, and as a consequence the reliability is significantly
higher than what has been demonstrated to date by pre-production rounds.
The contractor's past performance and the fact that no concrete procedure
changes have been instituted at the manufacturing plant make one suspect
the claim. This latter subjective infromation serves as a basis for
selecting an appropriate prior weighting factor.

II order to obtain an initial estimate of the prior distribution
of producti ln missile reliability, the test firing results to date must
be scored. [No example of a scoring criterion is provided here because
it is not thought to be germane to this example. One point should be
made howevel. The objective in developing a scoring criterion should
be to remov. all possible biases. For instance, if, as a result of the
pra-production flights, design problems were diagnosed and corrected
these flights should not be counted as observations. The results of a
hypothetical scoring of the Research and Development, Industrial
Prototype and Production missiles are summarized in Table 5.1. Based on
this scoring, there are 40 observations for the pre-production rounds and
20 observations for production rounds (no tests do not count as
observations).

TABLE 5.1 MISSILE FLIGHT FIRING SUMARY

TZpe of Missile Successes Failures No Tests

Research and Development 15 10 15

Industrial Prototype 10 S 15

Production 16 4 0

Using the 40 observations frow the pre-production firings, an
initial estimate of the prior distribution is given by

f r(40) 24 14 0 < R <
P P r(25) r(15) R. (1-W 0

The next issue is to use some method to arrive at a meaningful
weight for this prior distribution. This is a complex problem and should
not be treated superficially. All relevant subjective information and
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experience with similar systems should be taken into consideration. For
the purpose of this illustration, however, let us suppose that a rationale
such as that described by Atzinger and Brooks (Reference 4) was applied
and resulted in a prior weight equal to one half.

The parameters of the weighted prior beta distribution for this
example are then 12.5 and 7.5 respectively. These are based on 25
successes in 40 pre-production missile test firings. For computational
ease, the parameters can be rounded off to 13 and 8 without any apprecia-
ble impact on the final results.

Given the parameters of the prior distribution (k=13 and m-Z=8)
and the update distribution parameters (k=16 and n-k=4), the posterior
probability density function of RM is

r(41) RM28 (I-RM) 11

1(RMI6). = F(29) r(12) MI

Figures 5.1a and 5.1b depict both the posterior probability density
and the corresponding cumulative distribution function.

Faced with a decision concerning an uncertain parameter Ni

and given its posterior beta distribution, the decision maker has
several options available to him. He can use the cumulative distribution
function of the variable RM directly to address the following question:

What is the probability of meeting a specific requirement for Rm? For

For example, in this case the variable of interest, RM, is a missile

system's reliability. If the requirement is for RM to be at least 0.8,

the cumulative distribution in Figure 5.1b notes that the estimate of
the probability that RM > 0.8 is approximately 0.09.

While this is not a favorable result, one or more of the
following steps can be taken:

a. Some less stringent requirement could be evaluated (e.g.,
the probability that R, is greater than or eq'al to 0.7).

b. The distribution could be examined to deLermine the
lower limit.

c. One could examine the sensitivity of the prior weight. In
this case, however, the sensitivity analysis should not be conducted

4Loc. Cit.
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indiscriminately (i.e., Don't play a numbers game). There should be
legitimate reasons for changing the prior weight. These reasons will
generally revolve around debate over the rationale (assumptions) for
selecting the prior weight. For example, there may be two distinct
opinions about the prior weight, one group may be optimistic (smaller
weight) while the other group may be pessimistic (larger weight). After
analyzing the rationale behind both of these opinions, the analyst may
have selected a weight somewhere between these two schools of thought.

Suppose that in this case the prior weight is thought to be
conservative. To examine the impact of being optimistic, a prior weight
of one fourth is used. Using this weight, the parameters of the prior
distribution are 6 and 4 respectively. This gives rise to the following
posterior probability density function:

r(30) RM21 ( 7-RM)7

RM~116( l16)° r(22) r(8) 0 <I

Figures S.2a and 5.2b depict this posterior probability density
and the corresponding cumulative distribution function. Using the cumu-
lative distribution function it follows that the probability that RM is

greater than or equ:.l to 0.8 is now 0.2, a slight but insignificant
increase.

Having examined this example of the updating procedure it is
evident that the procedure is dependent on a significant amount of
subjective analysis. This inherent subjectivity in the selection of the
prior distribution and its corresponding prior weight is perhaps the
basis for most of the attacks against the Bayesian philosophy.
Non-Bayesians, who believe that the only ligitimate types of probabili-
ties are those that emanate from frequency-of-occurrence data, find it
difficult to accept the idea of using subjective personalistic probabil-
ities in forming a representative prior distribution. They contend that
the selection procedure is rather arbitrary and that different analysts
may come up with differing recommendations depending on their particular
prior assumptions.

It is the Bayesian analyst's contention, however, that a
decision maker faced with a real world decision will have intuition
concerning the uncertain situation which is based on the externalities
involved. He also feels that the most reasonable way for the decision
maker to proceed is to heed his feelings and modify them on the basis of
sample or experimental evidence. Certainly, he should not blind himself
to a large portion of the information available merely on the basis that
it may be subjective in nature, "If only objective probabilities have
meaning then one cannot handle some of the most important uncertainties
involved in problems of decision making." (See Reference 5).

5Hamburg, Morris; Statistical Analysis for Decision Making, Harcourt,

Brace and World, Inc., New York, 1970.
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The Bayesian agrees with the non-Bayesian that an inherent
feature of the updating procedure is that different analysts may come
up with different prior distributional assumptions. He feels, however,
that this is a healthy situation rather than a weakness in the approach
since the differences are clearly visible and can be used as a basis for
further arbitration which may result in a more meaningful analysis.

For the production-buy decision in the missile system example
just discussed, information such as that provided by pre-production test
flight data, the contractor's quality control program, engineering
judgment, and past experience with the contractor is perhaps some of the
most crucial decision information available. Using the Bayesian procedure,
the impact of this type information is reflected in the results thru the
prior distributional assumptions.

In addition to the direct use of the posterior distribution of
p for decision-making purposes, p may be a component of another variable
of interest. In such an instance the posterior distribution can be used
with standard statistical tools to determine the distribution of interest,
or in cases where it is not practical to apply these tools, a Monte Carlo
simulation can be used to examine the uncertainty in some function of the
variable p. This function may or may not include elements of uncertainty
other than p. Such a situation can be envisioned for the case previously
considered where p represents a missile system's reliability.

Suppose for example the variable of interest is the single shot
kill probability

P =R PSSK GSE * RM * PPF * ML

where P SSK = single shot kill probability for the missile system,

RGSE reliability of the ground support equipment,

RM reliability of the missile,

PPF probability of proper fuzing, and

SL probability of a kill given proper fuzing, a reliable
missile, and reliable ground support equipment.

Since the uncertainty in the single shot kill probability is

dependent on the uncertainty in the estimates of RGSE, PPF and ML as well

as the estimate of RM, a Monte Carlo simulation may be used to examine

this uncertainty. The uncertainty in the estimate of RM can easily be

introduced into a Monte Carlo simulation by sampling from the posterior
cumulative distribution function of p.
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5.4 SUMMARY AND CONCLUSIONS

In risk analysis, situations frequently exist where the
analyst has available both objective test data and other relevant infor-
mation based on the externalities of the problem. Often, due to cost and
time constraints, there is only a limited amount of relevant test data
available by the decision date. Thus, other factors such as previous
test data, engineering judgment, experience with similar systems, etc.,
must be taken into consideration. In this context, Bayesian statisvics
provides the analyst with a tool for synthesizing (consolidat'ion
activities' thisz information into one probability distribution which can
then be used directly to estimate the risks in question.

Unfortunately there seems to be some mystique that surrounds
any application of Bayesian statistics. This is due in some instances
to a disagreement with the Bayesian philosophy and in others to the lack
of a true understanding of the mechanism of the Bayesian approa,:h. Per-
haps one of the most widely used arguments against the use of the Bayesian
procedure is the apparent absence of a rational basis for constructing a
prior distribution. For certain classes of problems, however, the
argument has very little substance. Certainly in the missile system
reliability problnm, examined in detail in this article, there does
exist a rational basis for selecting the prior distribution.

Thus the Bayesian approach, although not to be applied
indiscriminately, should be given serious consideration as a viable tool
for certain risk analysis and decision risk analysis applications.
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